495 research outputs found

    Review on Human Re-identification with Multiple Cameras

    Get PDF
    Human re-identification is the core task in most surveillance systems and it is aimed at matching human pairs from different non-overlapping cameras. There are several challenging issues that need to be overcome to achieve reidentification, such as overcoming the variations in viewpoint, pose, image resolution, illumination and occlusion. In this study, we review existing works in human re-identification task. Advantages and limitations of recent works are discussed. At the end, this paper suggests some future research directions for human re-identification

    Human Re-identification with Global and Local Siamese Convolution Neural Network

    Get PDF
    Human re-identification is an important task in surveillance system to determine whether the same human re-appears in multiple cameras with disjoint views. Mostly, appearance based approaches are used to perform human re-identification task because they are less constrained than biometric based approaches. Most of the research works apply hand-crafted feature extractors and then simple matching methods are used. However, designing a robust and stable feature requires expert knowledge and takes time to tune the features. In this paper, we propose a global and local structure of Siamese Convolution Neural Network which automatically extracts features from input images to perform human re-identification task. Besides, most of the current human re-identification task in single-shot approaches do not consider occlusion issue due to lack of tracking information. Therefore, we apply a decision fusion technique to combine global and local features for occlusion cases in single-shot approaches

    Human Re-Identification in Multi-Camera Systems

    Get PDF
    This research involves live human re-identification on multi-camera systems. Each frame of multiple cameras needs to be captured and analyzed with image processing methods. First, a histogram of oriented gradients (HOG) is performed to identify a person in each frame. Next, Local Binary Pattern (LBP) descriptors are used on each person to determine certain set features about then. Lastly, a red, green, blue (RGB) color histogram is performed on a specific body mask. Each body is then given a label based on their LBP and color histogram information and that label will be sent to a database. This label should be the same across all the cameras. The process should also happen live. The research will include analysis of the difference between using a static body mask and using pose estimation for a more accurate color histogram. Also, regional descriptors will be used to better describe the human body. Lastly, the difference between YCrCb and RGB color histograms will be shown.https://ecommons.udayton.edu/stander_posters/1460/thumbnail.jp

    Human Re-Identification with a Robot Thermal Camera using Entropy-based Sampling

    Get PDF
    Human re-identification is an important feature of domestic service robots, in particular for elderly monitoring and assistance, because it allows them to perform personalized tasks and human-robot interactions. However vision-based re-identification systems are subject to limitations due to human pose and poor lighting conditions. This paper presents a new re-identification method for service robots using thermal images. In robotic applications, as the number and size of thermal datasets is limited, it is hard to use approaches that require huge amount of training samples. We propose a re-identification system that can work using only a small amount of data. During training, we perform entropy-based sampling to obtain a thermal dictionary for each person. Then, a symbolic representation is produced by converting each video into sequences of dictionary elements. Finally, we train a classifier using this symbolic representation and geometric distribution within the new representation domain. The experiments are performed on a new thermal dataset for human re-identification, which includes various situations of human motion, poses and occlusion, and which is made publicly available for research purposes. The proposed approach has been tested on this dataset and its improvements over standard approaches have been demonstrated

    Boosted human re-identification using Riemannian manifolds

    Get PDF
    International audienceThis paper presents an appearance-based model to address the human re-identification problem. Human re-identification is an important and still unsolved task in computer vision. In many systems there is a requirement to identify individuals or determine whether a given individual has already appeared over a network of cameras. The human appearance obtained in one camera is usually different from the ones obtained in another camera. In order to re-identify people a human signature should handle difference in illumination, pose and camera parameters. The paper focuses on a new appearance model based on Mean Riemannian Covariance (MRC) patches extracted from tracks of a particular individual. A new similarity measure using Riemannian manifold theory is also proposed to distinguish sets of patches belonging to a specific individual. We investigate the significance of MRC patches based on their reliability extracted during tracking and their discriminative power obtained by a boosting scheme. Our method is evaluated and compared with the state of the art using benchmark video sequences from the ETHZ and the i-LIDS datasets. Re-identification performance is presented using a cumulative matching characteristic (CMC) curve. We demonstrate that the proposed approach outperforms state of the art methods. Finally, the results of our approach are shown on two further and more pertinent datasets

    Real-world Human Re-identification: Attributes and Beyond.

    Get PDF
    PhDSurveillance systems capable of performing a diverse range of tasks that support human intelligence and analytical efforts are becoming widespread and crucial due to increasing threats upon national infrastructure and evolving business and governmental analytical requirements. Surveillance data can be critical for crime-prevention, forensic analysis, and counter-terrorism activities in both civilian and governmental agencies alike. However, visual surveillance data must currently be parsed by trained human operators and therefore any utility is offset by the inherent training and staffing costs as a result. The automated analysis of surveillance video is therefore of great scientific interest. One of the open problems within this area is that of reliably matching humans between disjoint surveillance camera views, termed re-identification. Automated re-identification facilitates human operational efficiency in the grouping of disparate and fragmented people observations through space and time into individual personal identities, a pre-requisite for higher-level surveillance tasks. However, due to the complex nature of realworld scenes and the highly variable nature of human appearance, reliably re-identifying people is non-trivial. Most re-identification approaches developed so far rely on low-level visual feature matching approaches that aim to match human detections against a known gallery of potential matches. However, for many applications an initial detection of a human may be unavailable or a low-level feature representation may not be sufficiently invariant to photometric or geometric variability inherent between camera views. This thesis begins by proposing a “mid-level” human-semantic representation that exploits expert human knowledge of surveillance task execution to the task of re-identifying people in order to compute an attribute-based description of a human. It further shows how this attribute-based description is synergistic with low-level data-derived features to enhance re-identification accuracy and subsequently gain further performance benefits by employing a discriminatively learned distance metric. Finally, a novel “zero-shot” scenario is proposed in which a visual probe is unavailable but re-identification is still possible via a manually provided semantic attribute description. The approach is extensively evaluated using several public benchmark datasets. One challenge in constructing an attribute-based and human-semantic representation is the requirement for extensive annotation. Mitigating this annotation cost in order to present a realistic and scalable re-identification system, is motivation for the second technical area of this thesis, where transfer-learning and data-mining are investigatedin two different approaches. Discriminative methods trade annotation cost for enhanced performance. Because discriminative person re-identification models operate between two camera views, annotation cost therefore scales quadratically on the number of cameras in the entire network. For practical re-identification, this 4 is an unreasonable expectation and prohibitively expensive. By leveraging flexible multi-source transfer of re-identification models, part of this cost may be alleviated. Specifically, it is possible to leverage prior re-identification models learned for a set of source-view pairs (domains), and flexibly combine those to obtain good re-identification performance for a given target-view pair with greatly reduced annotation requirements. The volume of exhaustive annotation effort required for attribute-driven re-identification scales linearly on the number of cameras and attributes. Real-world operation of an attributeenabled, distributed camera network would also require prohibitive quantities of annotation effort by human experts. This effort is completely avoided by taking a data-driven approach to attribute computation, by learning an effective associated representation by crawling large volumes of Internet data. By training on a larger and more diverse array of examples, this representation is more view-invariant and generalisable than attributes trained on conventional scales. These automatically discovered attributes are shown to provide a valuable representation that significantly improves re-identification performance. Moreover, a method to map them onto existing expert-annotated-ontologies is contributed. In the final contribution of this thesis, the underlying assumptions about visual surveillance equipment and re-identification are challenged and the thesis motivates a novel research area using dynamic, mobile platforms. Such platforms violate the common assumption shared by most previous research, namely that surveillance devices are always stationary, relative to the observed scene. The most important new challenge discovered in this exciting area is that the unconstrained video is too challenging for traditional approaches to applying discriminative methods that rely on the explicit modelling of appearance translations when modelling view-pairs, or even a single view. A new dataset was collected by a remote-operated vehicle using control software developed to simulate a fully-autonomous re-identification unmanned aerial vehicle programmed to fly in proximity with humans until images of sufficient quality for re-identification are obtained. Variations of the standard re-identification model are investigated in an enhanced re-identification paradigm, and new challenges with this distinct form of re-identification are elucidated. Finally, conventional wisdom regarding re-identification in light of these observations is re-examined

    Novel architecture for human re-identification with a two-stream neural network and attention ,echanism

    Get PDF
    This paper proposes a novel architecture that utilises an attention mechanism in conjunction with multi-stream convolutional neural networks (CNN) to obtain high accuracy in human re-identification (Reid). The proposed architecture consists of four blocks. First, the pre-processing block prepares the input data and feeds it into a spatial-temporal two-stream CNN (STC) with two fusion points that extract the spatial-temporal features. Next, the spatial-temporal attentional LSTM block (STA) automatically fine-tunes the extracted features and assigns weight to the more critical frames in the video sequence by using an attention mechanism. Extensive experiments on four of the most popular datasets support our architecture. Finally, the results are compared with the state of the art, which shows the superiority of this approach

    Novel Architecture for Human Re-Identification with a Two-Stream Neural Network and Attention Mechanism

    Get PDF
    This paper proposes a novel architecture that utilises an attention mechanism in conjunction with multi-stream convolutional neural networks (CNN) to obtain high accuracy in human re-identification (Reid). The proposed architecture consists of four blocks. First, the pre-processing block prepares the input data and feeds it into a spatial-temporal two-stream CNN (STC) with two fusion points that extract the spatial-temporal features. Next, the spatial-temporal attentional LSTM block (STA) automatically fine-tunes the extracted features and assigns weight to the more critical frames in the video sequence by using an attention mechanism. Extensive experiments on four of the most popular datasets support our architecture. Finally, the results are compared with the state of the art, which shows the superiority of this approach
    • …
    corecore