
Real-world Human Re-identification: Attributes and Beyond.
Layne, Ryan David Conway

 

 

 

 

 

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author

 

 

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/xmlui/handle/123456789/9876

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/xmlui/handle/123456789/9876


1

Real-world Human Re-identification: Attributes

and Beyond

Ryan David Conway Layne

Submitted to the University of London in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

Queen Mary University of London

2015



2



3

Real-world Human Re-identification: Attributes

and Beyond

Ryan David Conway Layne

Abstract

Surveillance systems capable of performing a diverse range of tasks that support human intel-
ligence and analytical efforts are becoming widespread and crucial due to increasing threats
upon national infrastructure and evolving business and governmental analytical requirements.
Surveillance data can be critical for crime-prevention, forensic analysis, and counter-terrorism
activities in both civilian and governmental agencies alike. However, visual surveillance data
must currently be parsed by trained human operators and therefore any utility is offset by the
inherent training and staffing costs as a result. The automated analysis of surveillance video is
therefore of great scientific interest. One of the open problems within this area is that of re-
liably matching humans between disjoint surveillance camera views, termed re-identification.
Automated re-identification facilitates human operational efficiency in the grouping of disparate
and fragmented people observations through space and time into individual personal identities,
a pre-requisite for higher-level surveillance tasks. However, due to the complex nature of real-
world scenes and the highly variable nature of human appearance, reliably re-identifying people
is non-trivial.

Most re-identification approaches developed so far rely on low-level visual feature match-
ing approaches that aim to match human detections against a known gallery of potential matches.
However, for many applications an initial detection of a human may be unavailable or a low-level
feature representation may not be sufficiently invariant to photometric or geometric variability
inherent between camera views. This thesis begins by proposing a “mid-level” human-semantic
representation that exploits expert human knowledge of surveillance task execution to the task
of re-identifying people in order to compute an attribute-based description of a human. It fur-
ther shows how this attribute-based description is synergistic with low-level data-derived fea-
tures to enhance re-identification accuracy and subsequently gain further performance benefits
by employing a discriminatively learned distance metric. Finally, a novel “zero-shot” scenario is
proposed in which a visual probe is unavailable but re-identification is still possible via a manu-
ally provided semantic attribute description. The approach is extensively evaluated using several
public benchmark datasets.

One challenge in constructing an attribute-based and human-semantic representation is the
requirement for extensive annotation. Mitigating this annotation cost in order to present a realis-
tic and scalable re-identification system, is motivation for the second technical area of this thesis,
where transfer-learning and data-mining are investigatedin two different approaches. Discrim-
inative methods trade annotation cost for enhanced performance. Because discriminative per-
son re-identification models operate between two camera views, annotation cost therefore scales
quadratically on the number of cameras in the entire network. For practical re-identification, this
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is an unreasonable expectation and prohibitively expensive. By leveraging flexible multi-source
transfer of re-identification models, part of this cost may be alleviated. Specifically, it is possible
to leverage prior re-identification models learned for a set of source-view pairs (domains), and
flexibly combine those to obtain good re-identification performance for a given target-view pair
with greatly reduced annotation requirements.

The volume of exhaustive annotation effort required for attribute-driven re-identification
scales linearly on the number of cameras and attributes. Real-world operation of an attribute-
enabled, distributed camera network would also require prohibitive quantities of annotation effort
by human experts. This effort is completely avoided by taking a data-driven approach to attribute
computation, by learning an effective associated representation by crawling large volumes of
Internet data. By training on a larger and more diverse array of examples, this representation
is more view-invariant and generalisable than attributes trained on conventional scales. These
automatically discovered attributes are shown to provide a valuable representation that signifi-
cantly improves re-identification performance. Moreover, a method to map them onto existing
expert-annotated-ontologies is contributed.

In the final contribution of this thesis, the underlying assumptions about visual surveillance
equipment and re-identification are challenged and the thesis motivates a novel research area
using dynamic, mobile platforms. Such platforms violate the common assumption shared by
most previous research, namely that surveillance devices are always stationary, relative to the
observed scene. The most important new challenge discovered in this exciting area is that the un-
constrained video is too challenging for traditional approaches to applying discriminative meth-
ods that rely on the explicit modelling of appearance translations when modelling view-pairs,
or even a single view. A new dataset was collected by a remote-operated vehicle using control
software developed to simulate a fully-autonomous re-identification unmanned aerial vehicle pro-
grammed to fly in proximity with humans until images of sufficient quality for re-identification
are obtained. Variations of the standard re-identification model are investigated in an enhanced
re-identification paradigm, and new challenges with this distinct form of re-identification are elu-
cidated. Finally, conventional wisdom regarding re-identification in light of these observations is
re-examined.
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Chapter 1

Introduction

“And set a watcher upon her, great and strong Argos, who with four eyes looks every

way. And the goddess stirred in him unwearying strength: sleep never fell upon his

eyes; but he kept sure watch always.”

– Hesiod’s “The Aegimius”

In the past decade there have been many technical innovations and advancements in the use

of visual sensing technology, in large part due to increasingly cheap and powerful computer

equipment. Indeed, computers and cameras can now be found in everyday appliances like mo-

bile phones and bathroom scales, “smart” advertising billboards in the high-street and even worn

upon our person or integrated into other personal accessories such as watches and eye-wear. To-

day most people own at least one hand-held device capable of communication and accessing

information from the Internet. Computers have become adjunct to human cognition to the extent

that many people would struggle without the ability to use a computational device of some kind,

either extending their natural abilities and work efficiency or facilitating personal recreational

activities. In today’s society, the ubiquity of modern computing technology has infiltrated and

become integrated into practically every aspect of our lives, and has become a vital tool that

has improved our efficiency at performing many tasks. Computers are capable of performing

simplistic tasks faster and more tirelessly than humans themselves, but this is not sufficient for

the performance of higher-level real-world visual tasks that humans are able to do effortlessly

such as identifying a friend in the street or recognising a co-worker’s absence from a meeting.
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These invariably require more advanced operations that cannot so easily be defined. Many daily

activities humans perform involve multiple senses, amongst which the visual sense is prime. The

visual sensing ability enables humans to distinguish salient objects and entities of importance in

their immediate environment such as food, vehicles, animals and each other, as well as affording

the ability to navigate complex and cluttered environments and to read, write and communicate.

It facilitates these tasks even in the absence of other senses such as touch, smell, or hearing.

Visual sense provides a constant stream of important and egocentric information, fulfilling the

need for higher-level contextual cues that enable humans to take actions based on mixtures of

often complex and nuanced visual observations. The benefit of replicating similar human visual

functionality via artificial means is therefore predetermined and fundamentally important for a

broad variety of traditional application areas such as robotics, industrial automation, or navi-

gation which would benefit greatly from heightened abilities in these areas. New application

domains continue to emerge as technology and human needs evolve, however. One such area

is that of visual surveillance, important since it bears the potential to help prevent crime and

crucially provides useful intelligence that may assist government agencies in reducing terror-

ist threats toward critical infrastructure and against the safety of citizens. Whilst human visual

surveillance has been employed for many decades if not millennia, technological surveillance is

still unable to replace the need for human insight. A human can recognise someone he or she has

seen before despite poor lighting, an incomplete image and from irrespective of media type such

as photographs, video or drawings. The act of recognition – or re-identification – is simple, but

paves the way for more complex and useful downstream tasks and underpins the very essence

of intelligence gathering and human visual analysis. Shortening the gap between human perfor-

mance and machine-learning-driven, algorithmic performance at similar visual surveillance tasks

is therefore highly vital.

1.1 Automated Visual Surveillance

The most popular and common realisation of visual surveillance technology in current use by

human operators can already be found in every major city worldwide, making it the obvious can-

didate for providing surveillance data for automated systems to exploit. Closed-circuit television,

(or CCTV) cameras, such as those normally seen affixed to ceilings or the sides of buildings,

are the most commonly observable means of obtaining surveillance data, and in the past forty
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years, CCTV has changed little in function or form excepting improved resolution and the in-

cremental upgrade of CCTV cameras – so-called pan-tilt-zoom cameras – capable of interactive

re-orientation by the operator in order to provide enhanced real-time surveillance coverage. The

availability of cheaper and better surveillance technology such as CCTV, combined with escalat-

ing worldwide security challenges has encouraged governments to focus on deploying more and

more preventative surveillance equipment [60, 5]. This has resulted in a widespread prolifera-

tion of video surveillance equipment for intelligence gathering, municipal crime and terrorism

prevention, and other monitoring purposes such as for health and safety or business analytics

[60]. The benefits of deploying surveillance in these areas are numerous; principally, events in-

volving humans can be passively and unobtrusively recorded from a distance, often within large

public spaces and over long periods of time. The recorded data are thus available if the need for

detailed record arises in the future, but in practice storage is not infinitely available nor cheap

and the effort and expense involved in having human operatives analyse data “just in case” is

impractical. This poses a significant challenge to government agencies who wish to benefit from

dense human-level intelligence, insight and description of surveillance data – which is more eas-

ily stored than retaining the video data itself – but cost-effectively and without the need for one

human operator per camera.

1.1.1 Surveillance Technology and Operation

CCTV is most commonly deployed on a permanent or long-term basis in public spaces at fixed

angle and elevation, and directed towards areas-of-interest (AOI). Primarily the motivation is

to cover critical infrastructure or civilian crime and terrorism hot-spots such as transit hubs,

public transport vehicles, or shopping arcades; wherever the risk of criminal or terrorist activity

is expected to be either frequent or sustained [90].

Private entities may also deploy CCTV camera networks according to their own require-

ments, such as placing recording entrance and egress points, service areas in which employees

may intersect with the general public, or high-value areas such as vaults or warehouses contain-

ing stock and equipment. Regardless of whether the operating entity is private industry or public

sector, CCTV camera data are usually routed to a single location, normally a centralised oper-

ations room such as that depicted in Figure 1.1 on page 25 where one or more trained human

operators will be employed.

Because not all CCTV cameras in the United Kingdom are centrally owned it is difficult to
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quantify exactly how many are in use and for which purposes, however various reports indicate

an increase from just approximately 100 cameras across three town centers in 1990, to 5,238

cameras across 167 towns in 1997 [5], approximately 2 million in 2006 [181] rising in 2014

to between 4.9 and 5.9 million CCTV cameras in the entire United Kingdom [1, 132]. Of the

cameras estimated to be in use in 2014, it is further estimated 70,000 to 84,000 cameras are

available for immediate use by government agencies [1] with a high proportion active in London

and the other major cities [60]. The cameras are used in the execution of various surveillance

tasks by human operators, most notably for:

1. Tracking target individuals through a distributed camera network

2. Identifying target individuals from prior “watchlists”

3. Identifying suspicious behaviour, objects, or vehicles

4. Identifying accidents or emergencies

5. Monitoring human or vehicular traffic patterns and flow

6. Monitoring crowd behaviour

However, the use of human operators for CCTV monitoring is costly and inefficient. Opera-

tors must be trained in order to make use of CCTV footage effectively, since there is a significant

performance deficit between untrained and trained operators [132, 180]. In addition, standard

CCTV control room practices have been repeatedly shown to be inefficient [181, 89, 90, 160, 63,

62, 79, 35], but remain mostly unchanged since the 1970s in terms of practices [1, 90, 35] and

indeed control room configuration and structure [1, 35] (See Figure 1.1 on the next page for a

visual comparison of control rooms in the 1970s and in recent years).

CCTV operator efficiency has been investigated regularly since the 1970s with slightly more

emphasis on the psychological motivations of operators rather than their capability at specific

tasks or the overall control-room paradigm. Early research by Tickner et al. indicated that opera-

tors may only monitor less than 10 cameras before their performance was significantly impaired

at standard detection tasks, due to perceptual overload [168]. Gill et al. note that as of 2005,

the operators they observed were responsible for up to 90 cameras at a time [63]. Keval and

Sasse, and in separate work Smith, report the average work shift of a modern CCTV operator

was now 12-hours [90, 160] – whereas a reasonable expectation of alertness and attention to a
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Figure 1.1: The evolution of modern CCTV control rooms; (left) Circa 1970, a control center
in Munich, Germany; (right) Image of a contemporary CCTV control room from Sedgemoor
Council, England. Despite the large amount of visual data available, only a small number of
operators will be monitoring in real-time, and despite advances in storeage technology, recorded
video is often deleted after a month.

retrieval or search task is just 50 minutes before a rest period is required [175]. Smith describes

the day-to-day effect of long-term CCTV operation on human operators under standard working

conditions, listing multiple deficits; task-avoidance behaviourisms such as smoking cigarettes,

socialising, and abuse of CCTV systems for personal amusement, as well as feeling undervalued

and immured by their work [160]. Both Smith, and Dadashi et al. conclude that these factors

significantly undermine any potential CCTV surveillance effectiveness. These underlying issues

clearly undermine operator vigilance and workload and irrespectively even motivated and highly

trained operators must take breaks, eat, and communicate during which time their attention is not

focused on the task of surveillance. Furthermore, the transfer of tacit operational knowledge be-

tween operators during training of new recruits is inherently lossy, resulting in lead-times before

each operator can achieve full operational performance levels.

Although these studies are sometimes isolated or conducted at small scale, the factors high-

lighted are of clear relevance and generally motivate the need to assist human operators with

day-to-day surveillance tasks using automated technology.

1.2 Mobile Surveillance

Recently, commodity products such as smart phones, passenger vehicles, remote-operated vehi-

cles and even eye-wear are capable of recording quality video. This has given rise to a potential

new modality of surveillance source footage. One particular such alternative source is under-

pinned by the escalating use of remote-operated vehicles, or unmanned aerial vehicles, colloqui-
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ally referred to as UAVs or “drones” [34, 134]. UAVs have become widely affordable and are

now increasingly available to civilians rather than solely to government agencies – much like

CCTV rapidly became widespread from the 1970s onwards. So-called “off-the-shelf” UAVs are

commonly equipped with visual sensors of rival or better quality to contemporary CCTV cam-

eras. Although not currently as prevalent in surveillance applications as CCTV cameras, the

use of diverse devices is becoming increasingly common and may afford additional capabilities

which have yet to be considered fully for automated surveillance tasks [34].

While the de facto sources from which most video surveillance is derived are statically-placed

CCTV cameras, the technology has limitations. The advent of affordable and widely integrated

visual sensing equipment into everyday artefacts such as phones, tablets and even vehicles and

clothing, provides further opportunities for the exploitation of video data for surveillance pur-

poses. The range of suitable devices is very broad, but all devices can either record or stream

video data and are qualitatively more flexible for surveillance due to being mobile. In this thesis

they are broadly designated mobile surveillance platforms, or MSPs. Table 1.1 on the facing page

provides comparisons between the principle differences of CCTV and MSPs. Non-exhaustively,

some of the primary benefits of using MSPs for surveillance instead of, or to augment static

CCTV are:

1.2.1 Rapid Deployment

MSPs may be as small as a personal mobile phone or mounted on a remote-operated or human-

driven vehicle, or integrated into personal clothing, permitting a major change in the way surveil-

lance tasks can be conducted. In traditional surveillance networks, each camera is permanently

placed and is immobile. Additional cameras may be added at the cost of additional cabling for

power and data transfer, connected to the existing systems. Conversely, additional MSPs can be

deployed far more quickly than static CCTV cameras, albeit with the disadvantage of reduced

operational durations. Despite this trade-off being able to quickly deploy an entire surveillance

network means that surveillance can be performed ad-hoc and in public spaces where current

CCTV coverage is non-existent or otherwise poor.

1.2.2 Mobility

Perhaps more crucially, such networks of MSPs are intrinsically dynamic in nature and can repo-

sition, re-orient, or follow as required by circumstance, subject only to constraints on power,
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Degrees of Freedom Operational Duration Data transmission Operating Mode

CCTV (Static) 0 Years Cabled, some wireless Passive

CCTV (PTZ) 2, (pan, tilt) Years Cabled, some wireless Passive, Autonomous, Interactive

MRP 6, (position, yaw, pitch, roll) Up to 72 hours Wireless Autonomous, Interactive

Table 1.1: Key differences between types of surveillance technology, standard closed-circuit
television (CCTV), CCTV with pan-tilt-zoom capability (PTZ) and mobile re-identification plat-
forms (MRPs), such as UAVs or portable cameras.

communication reception and mode of transport (such as whether it is carried by a human or

mounted on a UAV). This flexibility is of great utility in situations where surveillance must be

continuously maintained across distance, repositioned or reorientated rapidly. Lastly, where dy-

namic scene clutter or occlusion prevents adequate surveillance of a particular target, the ability

to move to a new relative viewing angle could be critical. Mobility also introduces a detrimental

factor in addition to the standard challenges with visual sensing equipment, as translational and

relative motion can introduce further complications such as “motion blur”.

1.2.3 Autonomy

Complete autonomy for the smaller UAVs is currently limited although it is common to find sub-

sets of obstacle-avoidance, round-trip navigation and rudimentary visual-sensing in popular com-

mercial offerings [34], this is mostly due to the limitations of on-board processing, load-bearing

and power supply. Larger UAVs possess richer capabilities, particularly military-operated UAVs,

but are unable to manoeuvre at distances close enough to be useful for classic surveillance tasks

and cost significantly more [54] (Figure 1.2 on the next page illustrates the most salient viewpoint

and modality differences between common surveillance data sources). Nevertheless, complete

autonomy is a useful scientific area for surveillance tasks, permitting the operation of UAVs

and other self-propelling visual sensors to patrol areas or perhaps dynamically “chase” targets

of interest, or otherwise perform specific tasks attentionally as required like moving closer to a

suspicious person detection in order to get a better reading, or otherwise optimise position for

some task [54, 57, 177, 127].

1.3 Human Re-identification

The general surveillance scenario is that cameras are placed and then analysed in real-time or

after an incident and a variety of tasks must be performed in order to obtain good intelligence.
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A.

B.
C.

D.

E.

F.
G.

Figure 1.2: Comparing viewpoint variations, dependent on surveillance video source, for the
standard re-identification problem; re-identifying a specific target (red silhouette) from other
people (F). Blue arrows denote typical approach vectors, field of view is illustrated with green
lines. Quadrocopter-type UAVs possess high mobility and can be operated at variable range
(A-C), thus surveillance applications from this source must be robust to extreme viewpoint vari-
ability. Larger UAVs (E) operating at higher altitudes are somewhat more constrained but still
highly variable. In contrast, closed-circuit television (CCTV) provides an immobile view (D).
Finally, human-portable devices permit closest-range observation (G).
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Where these tasks are aimed at providing intelligence on human entities however, there is a

single task that underpins most others, aside from detecting humans themselves: reconciling the

detections into entities, or human re-identification.

Human re-identification, refers to the task of recognising a particular individual in diverse

scenes obtained from non-overlapping cameras (Figure 1.3 on the following page). Specifically,

for surveillance applications performed over space and time, re-identification is the fundamen-

tal task that permits an individual transiting from one view to be differentiated from numer-

ous possible targets and matched in one or more other views at different locations and times.

This task therefore underpins and forms the foundation of a large number of crucial surveillance

tasks such as longer-term multi-camera tracking and forensic search, criminal investigations and

intelligence-gathering. Success at the re-identification task therefore paves the way for richer

surveillance data and applications and not just retracing the steps of a particular individual; ag-

gregating large volumes of individual observations reconciled by person identity can also grant

important insight into crowd-movement and facilitate planning operations, seasonal appearance

and behavioural model formation and anomaly detection tasks.

In conventional real-world surveillance scenes, there are too many unconstrained factors such

as lighting, distance from the camera to the person and person pose, to rely upon higher-level

biometry such as face recognition as intuition suggests we might. Indeed, if faces are detectable

at all they will only rarely be detectable at sufficient resolutions to be useful. Instead, holistic

appearance models are usually constructed taking into account the entire appearance of an indi-

vidual – clothing being the predominant cue, as well as hair or skin colour and carried objects.

However, this approach is inherently weak and does not generalise perfectly. For instance, darker

clothing is predominant in winter which limits the discriminativeness of this kind of appearance

model. Furthermore, there are no guarantees that an individual’s relative orientation to the cam-

era will be the same in each camera view, the result of which being that in order to re-identify

a person under these conditions a system must be able to match the front of a person to the

rear view of the same person and disambiguate between other, more similar but incorrect people.

More formally, intra-class variability is frequently going to be significantly larger than inter-class

variability across cameras.



30 Chapter 1. Introduction

Setting Camera Pairs Match Person Count View-specific Multi-shot Evaluation

Singleshot [47, 186, 94, 6] 1+ N : N Known Yes No Rank 1, CMC

Multishot [47, 91] 1+ N : N Known Yes Grouped Rank 1, CMC

Table 1.2: There is little variation amongst standard re-identification problem variants besides
having one “shot” of each person per view, or more shots of each person per view. Match: N : N
reflects closed world one-to-one mapping among N people in view 1 : view 2. This table is
expanded later in Table 6.1 on page 151, Chapter 6, where additional formulations are posited.

Figure 1.3: An illustration of the re-identification problem. Given a “probe” image of a person
observed somewhere in the surveillance network (left), a subset of all possible matches to search
form a “gallery” (right), with the goal being to correctly identify the image containing the person
shown in the probe (correct match highlighted by a green box).

1.4 Challenges and Motivation

Conceptually, the re-identification task could appear to be a simple retrieval task between indi-

vidual camera views; indeed, some surveillance tasks such as querying a camera network for

people wearing “red shirts” are very close to this definition. However, the key challenge for re-

identification is not to simply locate people with similar appearance, it is to distinguish within

those people to locate the same identity from all the others, with appearance being a potentially

confounding or assistive factor. Since most CCTV video footage records humans at stand-off

range, reliable biometry such as iris or face recognition is generally not possible without special-

ist equipment. The majority of re-identification methods utilise the person’s overall appearance
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instead, but this creates several severe challenges [65].

1.4.1 Viewpoint and Appearance Variation

By definition, re-identification is normally performed between two or more unconstrained but

fixed views, meaning that observations of people from each camera will be influenced by different

visual factors. This is due to the different positions, model, calibration, positional elevations

and angles of the video sources used, as well as factors inherent to each location such as scene

clutter or lighting change caused by environmental factors (see Figure 1.5 on page 37 for some

comparative surveillance video frames, and Figure 1.4 on the following page for examples of the

variability of person appearance). Each of these factors may change independently and may be

variably constrained.

1.4.2 Person Appearance

A person’s appearance can vary dramatically depending on their underlying build, taste in clothes,

pose, where they are observed, and multitudes of other factors. Generally, apparel breaks down

into five categories; (i) upper-body clothing (ii) lower-body clothing, (iii) full-body clothing and

(iv) head and footwear, and (v) accessories and carried items. Different clothing types possess

differing degrees of variability in terms of shape or state, for example long skirts, long hair and

scarves might vary dramatically in appearance depending on whether they are subject to wind

whereas cycling shorts or t-shirts may not due to being closer fitting, and jackets or coats might

be open or closed thus revealing lower layers of clothing that may not be visible from the side or

rear. Carried items can be useful discriminatory appearance cues for some surveillance tasks but

may be observed in many different configurations and relative positions to the person carrying

them, as well as left unattended elsewhere. Accessories such as bracelets and necklaces may

not be reliably visible at all except at very close range from the camera, but may be inferred

occasionally from subtle clues such as specular reflections [132].

Personal apparel can additionally consist of different colours, patterns or logos per item, both

front and back; as well as different trim, detail, and features all of which may be coloured and

textured uniquely. A further complication is that colour can be affected by environmental factors

such as local lighting condition; one example of this case might be observing a person wearing a

seemingly black top, when in fact the top is red and illuminated by a blue light.

Appearance is therefore a wealth of potentially discriminatory information for surveillance
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Figure 1.4: Appearance factors critical to matching pairs of person detections from the VIPeR
dataset [67]. Clockwise from top; consistent texture, consistent colour, texture concealed from
side view due to jacket, texture concealed due to self-occlusion and lighting condition change,
texture change due to apparel deformation and self-occlusion, different logo on front and rear
view.

purposes, but this information may be terminally hard to utilise effectively by automated systems

due to the extremely high number of possible combinations and permutations in unconstrained

scenes, particularly when relative viewing angle is not constrained. Figure 1.4 illustrates the

major forms of appearance variation as seen in one dataset [67], formally introduced in Chapter

3.

1.4.3 Stand-off Range, Enrolment and Biometry

The intuitive method of performing re-identification is to find invariant cues that guarantee iden-

tity can be determined with little or no ambiguity, however such approaches are problematic for

the standard visual surveillance setting. Biometrics refers to such cues, unique to the individ-

ual, that can be both quantitatively determined and remain robust over time and location. Some

examples of biometrics include fingerprints, retinal patterns, gait, typing patterns, and the writ-

ten signature. Whilst unequivocally useful cues for re-identification in theory, in practice except

for gait, these biometrics all require at least one of: (i) inconvenient and invasive enrolment
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procedures, (ii) active participation, (iii) and specialist sensing equipment. This makes them po-

tentially viable for closed-world environments such as secure buildings, but not for public space

surveillance with existing visual surveillance sensors already in situ.

Common types of enrolment include having high-resolution photographs taken at many dif-

ferent angles, fingerprint registration, or typing tests; which all require the active participation of

the subject before any surveillance task is possible. Even though such methods may take between

just minutes to an hour to complete, it is not feasible or desirable to employ them for surveillance

purposes at busy transit hubs and impractical do so for other public spaces with no distinct bot-

tlenecks; moreover, such processes would be inconvenient and actively rejected by the general

public on grounds of privacy. Therefore, any surveillance of public spaces must be capable of

success relying only on passively collected data and not rely on elaborate enrolment schemes.

This means that whilst surveillance equipment may be visible, and emplaced in such a position

as to maximise the chances of observing useful parts of a scene, that observation is carried out

from a distance and without disrupting the normal activities of the people transiting the area.

So-called “soft”-biometrics are a compromise between enrolment, requiring participation

and discriminativeness. They provide identifying cues that are not univocal to each individual

person but which may be sufficient in combination even amongst a large gallery of potential

“hits” to search within. Commonly soft-biometrics such as height, tattoos, facial hair, scars,

gait, body/limb proportion and hair and eye colour are used in this manner by human specialists.

For common surveillance scenarios such identifying cues are often impractical depending on the

specific scene configuration, i.e. due to the resolution of the camera and occlusion due to apparel,

and the distance of the subject from the camera.

The distance between the camera and the human, called stand-off range, is an important

factor. Potentially this distance is constrained by the physical configuration of the public space

(walls, fences, foliage, paths, doors) as well as other minutiae such individual behaviours; for

example, a camera viewing a busy transit hub will observe the majority of people following stan-

dard routes with little deviation over long periods of time, but consider the rarer cases where there

is a new advertisement or poster of information on a wall near a less-travelled area. The infor-

mation available at that specific location may only be of interest to a small percentage of people

overall or be only temporary, but could well result in a shift in the distribution of observations at

a particular distance and orientation from the camera.



34 Chapter 1. Introduction

Generally, distances that are too great from the camera will result in low-resolution person

detections that may not be directly useful for re-identification, for example because a distinctive

visual feature such as a logo or texture pattern may not be visible or the overall appearance is not

discernible from the amount of information available.

For practical applications, some of these factors may be alleviated by giving consideration

to to said factors during system design. As an example of this, consider the problem of people

appearing too far away from the camera. In order to mitigate this problem, one may ensure

surveillance cameras are placed at reasonable distances from the most frequently travelled areas

of a scene, whilst ensuring the detected people are observable at useful scales (a naive form

of calibration). However, systems installed without automated surveillance specifically in mind

may not be relocatable, or relocatable cheaply.

1.4.4 Intra View and Inter-View Variability

For surveillance tasks to be performed, data are taken from cameras occupying a unique loca-

tion in space and providing a similarly unique viewpoint of a given scene. For the majority of

cases and models of camera, this “view” of the world is fixed; the view will not rotate or oth-

erwise change position relative to the scene being observed, thus for re-identification performed

between such views to be successful, a critical part of the re-identification task concerns itself

with matching people between these different views. One aspect of achieving this, is accounting

for view-specific considerations.

The clutter and topography inherent to each specific and unique location will heavily in-

fluence the transitory paths humans select when crossing through the location, as well as the

particular layout and current crowdedness of the location. These factors directly influence and

constrain the set of all angles and frequency at which humans are observable by a single static

camera. For example, a human face is much more recognisable from the front than from the

side, and not at all visible from the rear; likewise some apparel might feature distinct designs or

logos on the front or back which might be useful in determining human identity, but which are

not visible all the time nor from every possible angle.

The appearance of a person can therefore radically alter depending on how it is viewed,

especially when only a single observation of the person is available from each camera and other

context is scarce. In these cases it could be easy to erroneously re-identify a person by falsely

matching appearance cues between people who resemble each other more closely from some
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angles than the true match resembles itself, solely due to circumstantial and unpropitious poses.

In addition, although in most current research, tasks are performed between two or more

camera views, there exist multiple special cases where this assumption does not hold (particularly

in real-world applications), for example when a surveillance target re-enters the same view or the

view itself is non-stationary.

1.4.5 Within-view Ambiguity

Standard fixed camera re-identification assumes a set number of views between which to perform

re-identification. That is, the standard setting is typically defined across a pair of camera views,

and within-camera tracking is typically assumed to fully disambiguate detections within-view.

For some applications, ‘within camera’ re-identification is necessary due to the lack of annotation

effort or tracking capability, particularly evident in a scenario where the task is to perform real-

time re-identification and from dynamic (non-stationary) views.

This is considerably non-trivial for the cameras with positional and orientational mobility,

since this opens the possibility that even stationary people can enter and exit the view area solely

due to the self-motion of the view.

1.4.6 Other Issues

The second challenge arises where viewpoint continually varies, perhaps because the camera is

mounted on a mobile vehicle or is hand-held, rather than the conventional fixed position CCTV

camera scenario. This is significant because for the most part, re-identification research follows

human expert practices and training. For the fixed-camera case, an operator becomes familiar

with a pair of camera views through repeated analysis. With a single continuously varying camera

view undergoing constant changes in range, lighting, motion and position, a different set of skills

and experience is required in order to compensate.

Most existing re-identification studies make the simplifying assumption of closed-world con-

ditions. That is that there is a one-to-one set match, where everyone in the first camera re-appears

in the second camera. No one disappears, and no extra people appear. Although convenient for

modelling and benchmarking purposes, this is clearly an extremely strong assumption to make

for practical applications. Given the mobile nature of some camera views, closed-world is clearly

an inappropriate assumption – meaning that re-identification becomes significantly more ambigu-

ous.
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1.4.7 Supervised Learning, Annotation and Data Availability

A central limitation inherent to supervised learning approaches to automated re-identification that

exploit human labelling in order to “learn” a more discriminative matching method is that such

methods are more suited to closed-world benchmark scenarios rather than realistic open-world

scenarios. The reason for this is that they require many pairs of person images annotated as hav-

ing the same identity or not, for each pair of cameras between which the system is expected to

operate. This is reasonable for synthetic studies and benchmark dataset volumes that are already

exhaustively annotated for identity, however it is highly impractical for real-world use where

many more cameras may be present in the network and where each pair of cameras would re-

quire exhaustive annotation, making deploying such a network laborious as well as prohibitively

expensive. Ideally, one would wish to deploy a re-identification system between all camera pairs

with minimal annotation and what a system learns from annotations on one camera pair should

be exploited efficiently and effectively by the others without requiring much further effort.

Aside from being a crucial factor in determining the tractability of training discriminative

matching classifiers, annotation cost is also a deciding factor for representation engineering. It

is generally the intuition that improving a representation somehow, as well as selecting the most

suitable discriminative learning method in tandem, is worthwhile in the sense that both represen-

tation and learner are linked in a synergistic manner and improving one improves the other with

the reverse also being true. One may expect that better representations make the task of discrimi-

native learning easier or more efficient, which in turn can provide better accuracy, generalisability

or better performance from the learnt model. However another crucial factor to consider is the

type and volume of human annotation work required in each of the previously mentioned cases.

Representation learning based methods provide a means of constructing powerful feature rep-

resentations, and do so at the cost and reliance on exhaustive human annotation. In the case

of attribute learning, annotations must be supplied for each attribute, and on each dataset. For

supervised re-identification models, pairs of person detections must be annotated with which to

construct a binary classifier capable of determining whether a given tuple of images are of the

same person. The annotation cost of this inter-camera case is therefore dependent on the number

of possible camera pairs within the whole network. Therefore, for surveillance task representa-

tions using machine-learning methods, the volume of annotation required to train a sufficiently

general discriminative model for real-world deployment in unconstrained environments is likely
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Ch 3: Attribute Learning Ch 4: Internet Attributes Ch 5:Transfer Learning Ch 6: UAV Re-identification

Identity Labels
Needed for weight learning phase Needed for weight learning phase Use fewer ID labels

↓

Unavailable in real-time

×

Attribute Labels
Needed for Attribute Learning Discovered Automatically

AUTO

Not Required

×

Not Required

×

Table 1.3: A tabular description of distinct types of annotation (identity or attribute) and annota-
tion treatment (needed, not needed, or not used).

to be intractably costly. Table 1.3 describes the technical chapters to follow and their relationship

with each type of annotation.

Figure 1.5: Demonstrating the visual differences between types of surveillance cameras, partic-
ularly between static-mounted CCTV cameras (top row), and mobile re-identification platforms
(MRPs) such as low-altitude UAVs (bottom). All cameras feature scene clutter, target occlu-
sion, and lighting and pose variations. MRPs offer further challenges due to their mobility which
results in fully unconstrained pose variation versus the coarse constraints of static camera place-
ment.
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1.5 Thesis Overview

1.5.1 Robust Representations

Earlier in this thesis, the importance of overcoming camera-specific condition variations was

highlighted, as well as the case that humans and computers have different abilities in terms of

their current ability to semantically interpret video data, requiring specific treatment in order to

conceptually interface human expertise to an automated video analysis system. Since human

observations via multiple cameras from different locations can present significantly different ap-

pearances, the starting point of this thesis is to construct robust representations, ideally invariant

to pose, background, lighting and occlusion, in order to facilitate subsequent re-identification.

Feature-centric approaches [47] suffer from the problem that it is extremely challenging to

obtain features that are discriminative enough to distinguish people reliably, while simultane-

ously being invariant to all the practical covariates such as motion blur, clutter, view angle and

pose change, lighting and occlusion. In contrast, learning approaches [77] make better use of

a given set of features by discriminatively training models to maximise re-identification perfor-

mance, for example metric learning [77] and support vector machines (SVM) [147, 6].

A mid-level semantic representation that is robust to the previously discussed challenges

and also enables “querying” the surveillance network by description only. This permits re-

identification even in the absence of a visually observed probe image and may be constructed

via expert human guidance. Furthermore, a mapping function that infers the inter-attribute utility

or usefulness is constructed for relatively low computational cost using Support Vector Machines

(SVMs) [155] and standard optimisation methods [131]. This function is necessary since it is of-

ten hard to intuit a priori whether a visual attribute is at all tractable for discriminative classifiers

to learn nor indeed whether it will be discriminative for identity, thus learning an inter-attribute

weighting serves to reduce the noise contributed by weak classifiers whilst preserving the most

useful attributes.

1.5.2 Reduce Annotation Cost: Gain Scalability

Mid-level semantic representation learning requires significant overheads of human annotation

effort. In addition, discriminative modelling techniques commonly employed to achieve superior

matching performance (for example, compared to nearest-neighbour matching) must be trained

in a binary (same class versus different class) rather than a multi-class (person identity as indi-
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vidual classes) setting. A central limitation of using such techniques in existing machine learning

approaches is that for the re-identification problem, they are more suited to closed-world and less

challenging benchmark problems than more realistic real-world scenarios with large numbers of

cameras. Both representation learning and re-identification model learning require either pairs

of annotated person images as being the same or different, for each camera pair, or individual

person images annotated with one or more visual attributes. This is only tractable for benchmark

datasets that are either already annotated by person identity, or can be exhaustively labelled for

attributes by a diligent researcher. However, these same requirements are thoroughly impractical

for systems that must scale for real-world use; it is extremely likely that the network will consist

of too many cameras. This makes methods involving the training of a re-identification model

for each camera pair, or the training of attribute classifiers for each attribute and each camera,

prohibitively expensive.

Two broadly different approaches are explored to this end; (i) transferring previously-learned

models to target domains using fewer human-annotated ground-truth label volume, and (ii) har-

nessing noisy Internet-sourced social media images and meta-data in order to construct bottom-

up representations without the exhaustive annotation requirement of the previous work.

1.5.3 Transfer Learning

What a system learns from annotations of one camera pair should be exploited by another pair

without requiring exhaustive annotation in the new pair. This is an issue in transfer learning [140,

45, 83]. Transfer learning is already important for many classical vision problems such as object

recognition [151] with multiple classes or domains. However it is critically important for training

re-identification models because the number of domains (camera pairs) can be quadratic in the

number of cameras. Therefore, obtaining exhaustive training data for each domain is even more

impractical than for conventional vision applications, thus transfer learning becomes critical.

Despite this, no prior re-identification studies have addressed this issue. Our first approach toward

alleviating the annotation cost employs the Multi-Kernel-Learning (MKL) approach from [46]

to learn camera-pairwise non-linear decision boundaries from multiple source domains. These

domains are subsequently projected onto a target-domain in order to improve learning for both

sparse and even non-sparse training-data volume whilst avoiding so-called “negative transfer”

(where transfer negatively impacts end performance rather than enhancing it) even if multiple

source domains are irrelevant for the target.
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1.5.4 Internet-driven Attributes

The first contribution of this thesis draws upon inspiration from the practices of human experts

to learn an attribute-centric, low-dimensional feature representation that corresponds to semantic

properties; but such top-down human-defined attribute approaches have some critical limitations:

(i) They require costly attribute annotation of site-specific training data. This is significantly more

laborious than the person-identity information used to train discriminative matching models. (ii)

The top-down definition of attributes does not guarantee that they are visually computable by

computer vision techniques given visual surveillance data. (iii) Due to the limited scalability of

the annotation approach, the annotated data are likely to be too small scale to learn accurate and

robust detectors for each attribute of interest.

The second approach addresses these issues by taking a very different data-driven [30, 126]

approach to learning attributes for re-identification. In it, an automatically defined ontology

is constructed from the bottom-up, as opposed to exploiting expert knowledge, and from it an

effective associated representation is learned via the large-scale mining of noisy but abundant

content on social photo sharing sites. Specifically, rather than asking an expert to define an

ontology [101, 102, 103, 117, 153, 174], we discover it automatically by clustering photo tags and

comment data. These clusters are used to train a bulk array of detectors using Linear Discriminant

Analysis (LDA), resulting in a large number of visually detectable attributes (in contrast to expert

defined ontologies, which while intuitive to experts, may require additional visual properties or

otherwise may not be possible to detect reliably with current vision techniques). The greater

volume and diversity of data used to train these automatically discovered attributes results in a

more reliable and generalisable attribute representation than conventional attribute representation

approaches on surveillance datasets can normally achieve.

1.5.5 Testing in the Open World

To ease model creation, evaluation and the establishment of benchmarks, most re-identification

work is formalised as a closed-world set match between a single pair of specific cameras, given

single observations of each person in each camera. As a result the typical evaluation metric is

Rank 1 accuracy (the % of perfect gallery matches for each probe image), or the cumulative

match characteristic (CMC) curve (the % of correct matches within the top N ranked matches,

for varying N) [178]. In this thesis, this is referred to as the standard re-identification problem.
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A very close variation is the classic multi-shot re-identification problem, which groups multiple

observations (shots) by identity. Both the classic re-identification approaches assume a “watch-

list” surveillance task or an inter-camera entity-association task and likewise tend to assume that

for each of the N probe people, a true match exists in the gallery set of all possible matches.

While a reasonable starting point for re-identification research, this scenario is artificially sterile

and does not commonly arise in real-world re-identification applications. Table 1.2 on page 30

summarises these classical approaches to re-identification, which are extended in Table 6.1 on

page 151, Chapter 6.

The majority of this thesis reflects the current state of art in person re-identification in terms

of both the standard problem definition and set of assumptions employed in the exploration of

it, however some of these assumptions do not apply in the conventional sense when considering

an all-aspect re-identification system for use in the real world as well as with today’s techno-

logical advances. Of those advances, this thesis primarily considers the introduction of UAVs

and portable camera equipment for surveillance and attempts to reconcile this with existing con-

temporary re-identification assumptions and rationales. To do this, a small commodity remote-

piloted flying vehicle was re-purposed and subsequently operated to perform surveillance tasks

on a busy university campus across distributed locations and using a real-time person detector

to cue the behaviour of the pilot to simulate a closed-loop, autonomous vehicle concerned with

re-identifying people.

1.6 Thesis Contributions

The contributions of this thesis to human re-identification research are:

1. A re-identification-centric attribute representation, modular in the sense that additional

mid-level semantic cues can be added and re-calibrated easily, and the final represen-

tation can be fused with additional information sources to in order to further improve

re-identification and maximise early-rank or overall performance. Additionally, the rep-

resentation is arbitrarily low-dimensional, an attractive property that facilitates tractable

combinatorics, optimisation and distance metric learning. Finally, as the representation

is readily human-interpretable, this permits Zero-Shot Re-identification (ZSR), a proce-

dure where the visual probe is replaced with a manually constructed, human-defined probe

vector [101, 102, 104]; this facility is crucial for real-world applications such as “per-
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son searching” where an initial image is unavailable or a subset of individuals are to be

retrieved given some shared appearance attributes.

2. We relax an important and practically unrealistic assumption, that there are exhaustive

and readily available amounts of training data within each domain, by generalising re-

cent ideas in discriminative-learning based re-identification [6] and SVM transfer learning

[83]. Specifically, we consider re-identification based on binary-relation learning [6, 96],

and show how to generalise this approach to achieve effective cross-domain learning by

combining non-linear decision boundaries from source domains to create a more accurate

target domain re-identification classifier. In this way we are able to improve on within-

domain learning both for sparse and even non-sparse training data volumes. Moreover we

show how to achieve this while systematically avoiding negative transfer, even when there

are multiple irrelevant source domains.

3. A novel perspective on the re-identification challenge, driven by recent technological inno-

vations in the fields of remote vehicle operation and the portability of visual sensing equip-

ment as well as a global heightened need for surveillance coverage beyond static CCTV

cameras. This part of the thesis makes four main contributions: (i) it presents a case for the

pursuit and development of a new research area using mobile re-identification platforms

(MRPs); (ii) it formalises three novel MRP-related variants on the classic re-identification

scenario, as well as associated evaluation metrics for each; (iii) it describes the creation

of the first known public dataset for MRP re-identification and establishes benchmarks for

each of the identified tasks; (iv) finally it elucidates the unique challenges posed by MRP

re-identification and discuss their implications for general re-identification research going

forward.

1.7 Thesis Outline

The remaining chapters of this thesis are organised as follows:

• Chapter 2 is a review of contemporary research relevant to the main components of this

thesis, including the extraction of higher-level representation from video surveillance data,

learning to re-identify using discriminative models and low-level features from both video

surveillance and Internet data, and the transfer of learned models to new data.
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• Chapter 3 describes the process of learning a new, surveillance-specific attribute represen-

tation, and explores the benefits of this representation through subsequent re-identification

experiments.

• Chapters 4 and 5 detail two distinct methods that both assist in the mitigation of annotation

costs normally associated with the use of state of art discriminative learning models to learn

mappings between surveillance cameras. In Chapter 4, a data-driven, bottom-up approach

is used to exploit the wealth of information available on the Internet in order to achieve

a representation compatible with the attribute representation introduced in Chapter 3. A

fundamentally different approach is introduced in Chapter 5 which shows how to transfer

previously learned models onto target camera-pairs using only partial annotation within

the target domain.

• Chapter 6 formally identifies, and provides an initial investigation of, a novel direction for

re-identification research using mobile re-identification platforms in lieu of static CCTV

camera footage. The chapter re-examines common re-identification practices with consid-

eration to a number of new challenges relating to the use of MRPs, and lays the foundation

for an exciting new research direction.

• Chapter 7 concludes the thesis, discussing potential future research and extensions to the

material presented in previous chapters.
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Chapter 2

Literature Review

The standard scenario for re-identification is a finite network of surveillance cameras watching

over public spaces through which people travel. Given a specific person of interest, nominated as

a detection in one camera, the goal of re-identification is to locate that same person; ostensibly

then, the aim is to retrieve by identity and not just appearance. Figure 2.1 on the next page

illustrates this.

A basic pipeline for re-identification can be implemented using three major stages: (i) the

acquisition of images of individuals from visual surveillance sensors (person detections), (ii) the

generation of a representation of the person e.g. the person’s signature (feature) and subsequent

post-processes depending on experimental considerations such as memory and computational

efficiency, (iii) and a matching stage, where a suitable method is applied between signatures to

determine which are of the same person. Figure 2.2 on page 47 illustrates a more comprehensive

re-identification system architecture, including extensions such as spatial sampling options and

auxiliary information sources.

While person detection is the starting point for any re-identification system, for convenience

the majority of re-identification work has assumed that perfect detections are readily available.

Large bodies of research on person detection currently exist, therefore the reader is invited to

examine Dollár et al.’s survey [44] for more detail in this area. Even with perfect detections,

each of the remaining challenges presents significantly difficult questions to the re-identification

community; what features are best? From which part of the detection should they be extracted

and to which part should they be matched? Which matching strategy is best and under what
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Camera A Camera A 

(Probe) Detection 

Possible route Possible route 

Possible route 

Camera B 

Camera B 

(Gallery) Detection 

Figure 2.1: An illustrative example of re-identification in it’s standard form; Two cameras (A,B)
watch over some public space through which a person of interest travels and is selected as the
Probe detection. The person then follows a route (yellow dashed), but when out of the camera
view (red dashed), could take any conceivable route (orange dashed). Re-identification positively
identifies the correct person as they appear in camera B.

conditions? This review enumerates informative work in re-identification that has contributed to

answering these questions, and in the following sections we enumerate contemporary research

relating to the approaches and results relevant to this thesis in later chapters.

Section 2.1 introduces re-identification research according to two main taxonomical axes that

have emerged in the past decade, aiming to provide the reader with an insight into the challenges

and responses from the re-identification research community. Section 2.2 examines a broad

cross-section of attribute discovery and usage as useful background for Chapters 3 and 4. Section

2.3 examines work on transfer learning in order to give the reader some background context for

Chapter 5.

2.1 Re-identification

Commonly in re-identification research the person signatures have been taken directly as low-

level feature (LLF) descriptions, reflecting photometric properties such as colour [125, 33, 138,

142], geometric properties such as texture and spatial structure [122, 47, 147], or combinations

thereof [47, 68, 61]. The principles behind using LLFs are those of simplicity and speed since
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Figure 2.2: Feature extraction stages for a potential re-identification system; (i) person detec-
tion, (ii) diverse appearance decomposition choices permitting separate feature extraction from
localisable body parts such heads, torsos and legs or uniformly sampled regions based on grid or
strips, appearance symmetry-driven regions, covariance of the entire image, or segmentation or
other manual selection; (iii) feature description, for example as a bag-of-words or histogram; (iv)
fusion with other features; (v) dimensionality reduction and finally (vi) re-identification.

such signatures can be easily and reliably measured and also provide reasonable levels of inter-

person discrimination together with inter-camera invariance. Once a suitable representation is

obtained, nearest-neighbour [47] or model-based matching algorithms such as support vector

ranking [147] can be employed to perform the matching and re-identification. In each case,

the re-identification process is underpinned by a distance metric (e.g. Euclidean, L1-Norm or

Bhattacharyya) chosen to measure the similarity between samples. Alternatively the distance

metric may also be optimised [189, 77, 75, 76, 101, 103] or fused with auxiliary information

[101, 103] in order to enhance the ability to find correct matches or to reduce mistaken matches,

or imposters. A significant body of research has focussed on improving individual stages of re-

identification [6, 101, 77], combinations of stages [47] and recently all-aspect re-identification

pipelines [110].

Approaches to improving re-identification matching or representations may be categorised

as (i) unsupervised (i.e. discovered from the underlying data structure) [61, 125, 71, 146, 40,

17, 15, 47, 32, 122, 123, 186] or (ii) supervised (discriminatively learned using labels) [68, 147,

179, 39, 188, 112, 128, 77, 41, 123, 107, 158], and lastly as (iii) engineered (procedural algo-

rithms). However, it is also customary to describe re-identification systems with respect to the

two common stages; namely improving either upstream (features) or downstream (matching task)

performance. For example, both representations or matching algorithms may be engineered by

“hand”, or discriminatively learned. Typically, it is reasonable to expect better features to im-
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prove downstream performance and thus overall re-identification performance. Synergistically,

improving the downstream method can improve performance even when exploiting sub-optimal

representations. In Figure 2.3 we illustrate this taxonomy using two orthogonal axes: matching

/ representation; and engineered / unsupervised / discriminatively learned, and discuss each in

following sections.
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Figure 2.3: An illustration of two orthogonal contemporary avenues of re-identification research,
novel representations and matching functions can both be “hand”-engineered, “learned” in an un-
supervised sense via data-driven algorithms or discriminatively learned (supervised) using label
data. Better representations embody intrinsically discriminative cues that are assistive for good
re-identification performance; matching methods may be also be created or learned and improve
downstream performance at the re-identification task. Some specific example classifications are
given, where shaded regions indicate a work that belongs to both matching and representation
categories.

2.1.1 Engineered Re-identification

The first sub-category of work embodies the view that practical challenges in re-identification

can be approached from a purely practical perspective; the algorithm is directly engineered ac-

cording to the insight and human expertise of the engineers. The majority of contributions to this

category of research are low-level statistical features, but a significant proportion also attends

to the open questions of how best to spatially sample the visual space and how to alleviate the

issue of light-variations between cameras. Solutions range from sampling features as patches on

a regular or overlapping grid, or as horizontal strips, through to exploiting second-order statistics

for matching and body-part-model fitting.

Feature-design or feature-engineering approaches are a cornerstone of re-identification and

often a popular first-generation research direction in other computer vision fields [164]. En-
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gineered features may generalise more uniformly across camera-views as well as scale more

tractably than discriminatively learned features trained with person detections labelled by identity

[129] or pairs of detections labelled as being the same person [6, 7]. However, engineered repre-

sentations for re-identification require no human supervision or annotation effort prior to use. It is

extremely challenging to design unsupervised features that are both generalisable across all con-

ceivable surveillance scenes, and robust toward practical covariates such as motion blue, clutter,

view and pose change, dynamic lighting and occlusion; however this is precisely the goal in order

to provide a high-performance feature. Another crucial factor is the question of which features

and therefore which visual cues are “best”. Colour is crucial in human visual perception, and is

the most distinctive “low-level” feature [68, 70], however it is also one of the most prone to noise

from the environment and may therefore be difficult to represent effectively for re-identification

across an entire camera network. Most engineered features are agnostic to the matching method

employed, thus may be matched downstream via nearest-neighbour distance metrics (e.g. Bhat-

tacharyya, Mahalanobis, L1, L2, or cosine distance) prior to final re-identification; alternatively

more complex matching algorithms may be used such as those discussed in Section 2.1.3.

The three forms of visual cue used to characterise human appearance for re-identification are

colour, shape and texture. Although colour [145, 33, 138, 142, 6, 77] is an important cue, it is

not discriminative enough to rely on alone and so other feature channels are often combined with

them, such as texture and shape [68, 32, 47, 14, 186, 122] and more recently depth [3, 11].

Gray and Tao [68] exploit discriminative learning for feature selection in their early work

(discussed in Section 2.1.1), however their engineered representation has been adopted by and has

underpinned several works in the last decade. Their ensemble representation defined an all-aspect

feature space comprising chromatic (RGB, HSV, YCbCr) visual cues as well as two families of

filter bank responses (Schmidt, Gabor) for 19 additional texture channels. This ensemble of

localised features (ELF, Figure 2.4 on the following page) space encodes a broad swathe of

information. In Gray and Tao’s work [68] the most informative channels are hue, saturation,

blue, Schmidt filters, Gabor filters, and the red channel in roughly equal measure, however this

uniform weighting of importance between features may not perform as well for a surveillance

scenario where the global appearance trend is towards green clothing such as a military setting,

or where blue and red apparel are worn only rarely.

Cheng et al. [32] also take biological inspiration toward re-identification, adopting Pictorial
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Figure 2.4: A depiction of 100 instances of ELF features. Feature channels for RGB, YrCr, HSV,
Gabor and Schmidt filters are sectioned (green box) by their respective dimensionality. The full
feature is 464 dimensions.

Structures (PS) for body pose estimation using a kinematic tree prior and local appearance repre-

sentation from each inferred part part location. As in [47, 14], Cheng et al.’s method incorporates

both chromatic histograms and stable colour regions computed using agglomerative clustering,

granting a similar coverage of visual cues as Farenzena et al.’s work. Ma et al. [122] extract Ga-

bor filters, weighted chromatic histograms and MSCR features from [56], applying covariance

descriptors to the features extracted at several scales. The final representation is the concatenation

of the differences between pairs of consecutive scales, unlike other covariance based approaches

applied to probe and gallery combinations which cannot scale as efficiently. Although effective,

the authors acknowledge no effort is made to learn more effective fusion weightings between

their representation and the other features, and the approach assumes uniformity of texture in the

background of each each person detection – an assumption that may be too brittle for detections

of people wearing clothing that lack textured apparel or in street scenarios where the background

indeed is more textured than the foreground.

Lastly, Zhao, Ouyang and Wang [186] propose a saliency-based method for re-identification

that addresses both pose-variation and person-misalignment, a challenge in forthcoming real-

world applications for re-identification that require automated person detection algorithms which

may produce variably misaligned detections. Zhao’s work looks toward mitigating this issue by

detecting the most salient regions from detections in disjoint views and using saliency as a cue for

matching between these salient regions. The features used include standard chromatic features

as well as SIFT (Scale Invariant Feature Transform), which complements the colour histograms

and is sampled densely over the detection in the form of patches.

The logical progression from matching single representations of human appearance is to par-

tition appearance in some meaningful way in order to exploit spatial configuration and local
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detail. Spatial decomposition strategies focus on either dividing the person detection into mean-

ingful regions, such as with body-part localisation or body model fitting [21, 9, 47, 53, 52, 10,

186, 154] or spatial zones such as strips [147, 68, 87, 113], in order to facilitate inter-part match-

ing [53, 47, 7, 101, 147, 142, 61, 31, 37, 10, 20] whilst reducing the effect of background noise

on the representation, or to improve matching of misaligned person detections by selectively

sampling only the most salient regions [186]. from the image based on some visual cue such

as covariance [56, 122]. Patch-based methods sample on either an overlapping [77, 22, 23] or

non-overlapping grid [106, 7], resulting in redundancy that may be exploited by dimensionality

reduction in later stages.

Features that describe the entire image regardless of which pixel contains information about

the person or background can lead to overwhelming quantities of background noise that can

degrade final re-identification performance since typically matching is performed using the ap-

pearance information of the person, with background information a distractor. For example, even

though the person depicted in two images may be in perfect alignment and be in the same pose

and lighting condition, a change in background between the two images could alter the computed

signature. Where automated person detection stages are employed, then human alignment can-

not be guaranteed due to detection misalignment. More crucially, representations characterised

as histograms discard important spatial information that may be useful for re-identification.

Various approaches attempt to circumnavigate these challenges and encode spatial informa-

tion using a variety of strategies. Gray and Tao [68] and Prosser et al. [147] used an intuitive

spatial model of horizontal strips, reasoning that re-identification data of the time consisted of

arbitrarily positioned but horizontal viewpoints, thus vertically posed humans in horizontally

aligned views would likely not benefit from the horizontal dimension. This confers the advan-

tage of preserving a coarse spatial structure somewhat localised over the head, torso, legs and

feet, but assumes that body proportion and alignment will be uniform between observations.

Avraham et al. [6] employed a similar strategy with only five strips, and in later work used a

discrete grid over both dimensions in order to capture potentially asymmetric appearance regions

[7]. Tahir et al. [165] and Park et al. [142] manually define regions, such as upper or lower body,

as does Huang et al. [81], noting that the strip-approach favoured in earlier literature is weak

toward misalignment and therefore employing a heuristic aggregation of strips into a two-part

model. Since humans often choose to wear one or two major articles of attire (such as a shirt
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and trousers) these approaches indeed capture major areas of interest, however depending on the

location and season, these cues alone may not be distinctive enough; for example as Gong et

al. and others observe, during winter months populations tend toward uniformly dark clothing

which results in heightened levels of ambiguity [104, 65, 132].

Recent work on face and scene alignment has enjoyed success in employing dense cor-

respondence and likewise high-performance re-identification features have begun to exploit

densely sampled patches from the source image. However, this strategy results in extremely

high-dimensional features [77, 74, 23, 123, 156]. Most dense-sampling approaches employ a

dimensionality reduction step such as principle component analysis (PCA) which selects the

most variant regions; affording the latter a dense and rich selection of regions from which to

select the most relevant for further processing [86, 15, 75, 77, 74, 178, 22, 110, 106]. Whilst

these methods show promising raw performance at re-identification tasks, they are weak toward

detection misalignment which can negatively impact re-identification system performance

[186, 110, 65].

Person misalignment is a recently identified area of research in re-identification and to date

there are only a handful of works that directly address it. Li et al. [110] implement an entire re-

identification framework in a single deep learning network, exploiting the dropout trick [73] in

order to force the network to randomly “forget” some patch displacement mappings learnt by the

previous network iteration. This has the effect of preventing the network from overfitting – in this

case, the network is prevented from forming debilitatingly strong mappings between feature filter

banks determined by the previous layer, and their subsequent selection for, and mapping between,

specific patches. In this way the final representation encodes a kind of soft spatial uncertainty

for each spatial patch and most likely patch to test for a match. Whilst effective, this approach

is unique to deep learning network design and therefore not available for most work. Zhao

et al. [186] contribute a saliency-derived method for (i) identifying spatial regions of a person

detection that are most distinct, or salient, and (ii) exploiting this cue by matching between

detected salient regions. For example, given two detections of the same individual bearing a

distinct green logo but otherwise uniformly dark clothing, the green logo will be detected as

most salient so long as it remains visible, regardless of where in the detection’s bounding box it

is observed. A saliency-based method for re-identification that addresses both pose-variation and

person-misalignment, an important forthcoming challenge for the next generation of real-world
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applications for re-identification; these will require automated person detection algorithms which

may produce variably misaligned detections. Zhao’s work looks toward mitigating this issue by

detecting the most salient regions from detections in disjoint views and using saliency as a cue for

matching between these salient regions. The features used include standard chromatic features

as well as SIFT (Scale Invariant Feature Transform), which complements the colour histograms

and is sampled densely over the detection in the form of patches.

In addition to representation and sampling methods, the final family of methods pertains

to the engineered matching of features between cameras. In an early example, Porikli [145]

used correlation matrix analysis applied to whole-image colour histograms extracted from video

frames to learn uni-modal colour transforms from a reference camera view to all other views

in the network in order to “calibrate” the chromatic differences from one camera to the next;

for example to compensate for light temperature differences commonly encountered when using

mismatched camera equipment.

Gheissari et al. [61] and Madden et al. [125] both try to incorporate illumination invari-

ance via normalisation strategies applied to dominant colours in order to build robust signatures.

Gheissari et al. designed an algorithm specifically robust toward variable non-rigid clothing de-

formation over time. The method samples and segments multiple detections of the individual and

then spatiotemporally cluster the regions in order to capture median chromatic appearance infor-

mation from the major articles of clothing. Once this normalised, more stable colour information

had been obtained, a manually defined decomposable triangular graph composed of vertices col-

lected into triple-cliques is fit to the intermediary image. Since the arrangement of the graph

regions is predetermined and ordered, the graph model permits trivial manual labelling as head,

shoulder, torso, pelvis, thigh and lower-leg regions, although the authors employ an interest point

detector and dense correspondence matching at the individual triangle/patch level. Although ro-

bust toward geometric clothing transformation over time, Gheissari’s algorithm uses a simplistic

colour representation that ignores potentially discriminative visual cues such as logos, detailing

and trim. It also matches histograms extracted from a high number of triangular, non-overlapping

regions which depend on initial lighting conditions, shading and does not generalise for all poses

– for example where legs are in mid-stride.

Farenzena et al. [47, 14] address multiple challenges in their contribution, “Person re-

identification by symmetry-driven accumulation of local features” (SDALF), which fuses
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multiple basic features and direct matching methods into a single descriptor. Their approach

to human pose variation is addressed with inspiration from gestalt theory [93], where a visual

symmetry-driven body partitioning scheme underpins subsequent spatial sampling locations and

provide cues for coarse pose estimation. The extracted features in this approach cover a broad

range of information including a traditional histogram-based colour representation weighted

by distance to the axis of symmetry for a coarse representation of visual appearance. Second,

an aggregate colour descriptor similar to that employed by Madden et al. [125], encodes blob

regions using agglomerative clustering of pixel data with respect to an inter-chromatic distance

threshold in order to preserve somewhat more localised visual information. Third, Farenzena

et al. construct a novel representation that facilitates matching and encodes recurrent patches

present in the image, such as repetitive stripes, cheques or tartan. In order to achieve this, patches

are randomly sampled from the detection close to the axes of symmetry, and thresholded based

on the entropy of the chromatic content. Patches containing areas of low visual complexity

are discarded since they likely represent areas of uniform colouration already encoded by the

previous two features. Finally, patches are clustered by HSV colour and the centroid of each

cluster is retained as the prime representation of the recurrent patch. Due to the different feature

extraction strategies, distance calculation using SDALF is not uniform for each feature type,

but are combined using a weighted sum at the final stage, making the SDALF compatible

with other metrics and representations. SDALF is a compelling case, where a multi-faceted

and multi-tiered approach to both spatial and visual cues results in a strongly discriminative

representation without any need for arduous human annotation; however, it is also an illustrative

example of a major flaw in this and other approaches that are modelled too narrowly and prone

to dataset bias as it does not generalise to other common surveillance scenes uniformly [170].

Bialkowski et al. harness both the engineered discriminative abilities of SDALF and [172]’s

regional covariance features in their re-identification work, applied to football. The work is a

special case where half of the closed set of observable humans will be uniformly attired and

intra-team re-identification is particularly challenging. Bialkowski’s augmented each identity’s

visual model with non-visual cues as to the role of that particular player, exploiting a semantic

non-visual cue for re-identification even though some players swapped roles throughout each

match. In order to train the model, 25,000 labelled frames of field hockey data were used to

discover role-order by formulating a linear assignment problem to be solved via optimisation.
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Engineered representations and matching methods typically exploit either direct human-

engineered, algorithmic approaches or second-order statistical methods such as covariance or

information theory, a way of encoding direct human expertise as to what statistical information

is relevant for the task; however in the next section unsupervised learning approaches are ex-

plored, which are related to engineered methods but include more complex activities such as

clustering in order to discover latent structure within the data that can be exploited.

2.1.2 Unsupervised Re-identification

Like engineered representations, unsupervised representations require no human supervision or

annotation effort prior to use, making this family of methods convenient and more scalable for

the real-world needs of re-identification as a result. Engineered methods exploit human insight

but one weakness shared by that family of methods is that they are restricted in composition to

pre-defined concepts available to the engineer and do not take advantage of observable latent

covariates within the data as practical cues. More concretely, they do not specifically address the

presence of an underlying hidden structure present in the unlabelled data, that may be valuable

to constructing a representation. Furthermore, in the engineered case the human engineer applies

their intuition specifically with regard to realising some goal, for example re-identification. In

the unsupervised case, there is usually no such assumption beyond the idea that uncovering a

latent structure will be useful somehow.

Madden et al. [125] define a normalised distance metric in the RGB colour space where the

Euclidean (L2) distance between two RGB triplets is normalised by colour magnitude. In the

normalised space, colours are then manually discretised into “principle” colours, (interpretable

as cluster centers in the aforementioned space), and enough principle clusters are retained to ac-

count for 90% of the pixels present in the image. To normalise the distribution of colour within

each cluster, a k-means algorithm iteratively adjusts membership calculation and centroid adjust-

ment and effectively “smoothing” the heuristically initialised cluster centers. In order to account

for illumination variation between surveillance scenes (camera views), Madden et al. apply a

colour intensity equalisation on both signatures; finally matching the normalised accumulative

cluster distributions between people using Kolmogorov distance. Although robust toward geo-

metric clothing transformation over time, Gheissari’s algorithm uses a simplistic colour repre-

sentation that ignores potentially discriminative visual cues such as logos, detailing and trim. It

also matches histograms extracted from a high number of triangular, non-overlapping regions
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which depend on initial lighting conditions, shading and does not generalise for all poses. The

inverse is true of Madden et al.’s approach which identifies, refines and “soft”-matches major

colour representations from the entire person detection.

Hamdoun et al., and in separate work Khedher, Yacoubi and Dorizzi [91] like Gheissari,

investigate interest-point detection-driven representation with a variations of the SURF interest-

point detector [13]. In Hamdoun’s work, the re-identification model is compiled over disjoint

successive interest-points extracted from detections of people that are temporally spaced at even

intervals and accumulated over time. The models are matched using sum of absolute differences

(SAD) with efficient high-dimensional nearest-neighbour search made tractable using KD-trees

[16]. Hamdoun’s approach is unique in that it completely disregards colour, instead matching

between the normalised distribution of first-order Haar-Wavelets found in the neighbour of each

interest point. Again, the normalisation step confers a degree of illumination invariance, with the

filter response aggregation encoding pose-invariant regions that describe visual commonalities

between observations in different poses.

Liu et al. [113] exploit a data-driven approach to evaluating feature importance by learning

a bottom-up measure and automatically adaptively weighting features according to the underly-

ing appearance. Liu et al. address the question of which subset of available features should be

used to best describe an individual observation a person, dependant on the background apparel

and lighting for that specific observation. In order to achieve this, the authors cluster a given

set of unlabelled images in order to discover prototypes, before assessing the feature importance

within each prototype by performing graph partitioning. The application of a clustering forest-

based method [26] for pairwise similarity estimation implicitly also provides feature selection

and weightings that can be applied to new detections via assignment to one of the existing proto-

types at test time.

In summary, a major advantage of data-driven approaches aside from not requiring explicit

human labelling effort, is that models can be constructed from latent structure discernable from

the data but not necessarily intuitive a priori. A slight disadvantage, is that a direct semantic

interpretation of such latent covariates may not always be possible, or such an interpretation may

not be as direct or immediate as that gained via discriminatively learned models (for example,

as in the experiment results found in Chapter 4 as compared to those in Chapter 3). It is of-

ten desirable however, to have such a direct mapping between human expectation and algorithm
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performance. The following section explores discriminative learning, or supervised, machine

learning approaches to re-identification that seek to exploit human provided labels for this pur-

pose.

2.1.3 Supervised Re-identification

Supervised methods have been applied to the task of modelling or “learning” representations,

refining them via discriminative feature-selection, or inter-camera matching by way of learning

a metric.

Learning an appropriate appearance representation for re-identification (also referred to in

other re-identification literature as appearance modelling) is a popular area of re-identification

research. Images can present intractable volumes of information and complexity at the pixel

level, therefore it has become common practice to first concentrate solely on removing noise

from visual information. Most appearance-based methods aim to extract relevant information

in the form of global or local features. For re-identification, the goal is to provide inherently

discriminative features that generalise well for unseen arbitrary surveillance scenes in real-world

conditions and between different views, whilst inducing good performance during subsequent

person identity matching.

In contrast to unsupervised methods, supervised learning approaches require manual human

expert annotation cues to train a discriminative machine-learning algorithm to perform a task nor-

mally predicated on human experience and wisdom. Supervised methods are potentially more

capable of being able to mitigate unconstrained misalignment and pose variations between de-

tections observed in different views. However, doing so requires a trade-off between the cost

and cardinality of human expert annotation on training data, the specific characteristics of the

data, and the potential performance impacts on the trained model. Furthermore, such models

may need additional training or retraining when applied to real scenarios or require additional

annotation effort to compensate for more complex or different scenes, (i.e., such models may not

generalise from experimental conditions or specific camera views to applied conditions or other

camera views).

In re-identification, supervised methods have been deployed for i) direct appearance mod-

elling [154, 106, 20, 52, 182, 31, 110] or indirect appearance modelling methods such as ap-

pearance mapping methods [6, 146] and feature-relationship modelling [68, 52, 165]; ii) distance

metric learning [39, 69, 179, 41, 128, 94, 77, 108, 27] or relativistic comparisons [147, 192]. For
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representation learning in re-identification, the motivation is that stronger features are synergis-

tic with, and thus capable of improving, discriminative learning model performance; therefore

justifying the cost of expensive human annotation for the initial representation learning. How-

ever, such approaches may require additional processing or augmentation in order to generalise

properly or be exploited for other camera views without additional annotation cost, retraining, or

both.

Supervised representations in re-identification exploit human provided label information in

order to learn functional mappings in the feature space that improve downstream performance

by modelling characteristics inherent to a training set, the assumption being that the covariates

learned by the model in this way will generalise to the test data. An early example of this can

be seen in Gray and Tao’s [68] work, introduced in Section 2.1.1; however since not every fea-

ture channel is equally contributive to the re-identification task the authors employ Adaboost

to discriminatively learn a weighting on the feature channels. Adaboost accomplishes this by

sequentially learning cheaply computable weak classifiers in a feed-forward multi-layered archi-

tecture. The learnt weights improve performance on the re-identification task, as well as being

interpretable in some sense as a measure of each feature channel’s overall utility for that task. In

Gray and Tao’s work [68] the most informative channels are hue, saturation, blue, Schmidt fil-

ters, Gabor filters, and the red channel in roughly equal measure. This determination is from the

supervised learning framework employed to discriminatively learn the functional mapping that

best permits use of the representation, however learning such a mapping may not be as useful for

the case where a scenario exhibits a global appearance trend towards green clothing (such as in a

military setting) where red may be an informative cue only rarely.

Prosser, Gong and Xiang et al. [146] build a bi-directional, cumulative brightness transfer

function algorithm to robustly learn how chromatic cues map between disjoint camera views. By

using a cumulative histogram for a descriptor, uncommon but useful cues from the underlying

brightness distributions may be preserved, and contribute to the accuracy of the end mapping

result. Colour is crucial in human visual perception, and the most distinctive “low-level” feature

[68, 70]. It is also one of the most prone to noise from the environment and may therefore be

difficult to represent effectively for re-identification across an entire camera network.

In other work, Prosser et al. [147] convert the re-identification task into a ranking problem

where the goal is to ensure the correct matches between candidate pairs are ranked earlier than
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incorrect matches. The motivation behind this change is ostensibly human in origin and inspired

by expected real-world application use-cases. After the ranking process, a list of possible matches

presented in order of likelihood can be quickly and more efficiently parsed by a human operator

than if the operator must personally search through every possibility themselves through visual

inspection. In effect, this is a feature selection process.

Li and Wang [107] also employ multiple intermediary learners, but instead jointly partition

coarse intra-camera appearance (ostensibly, pose) and employ a semi-supervised approach to

learn how to match between cameras. Since uncommon and more visually obvious appearances

can be more easily matched by expert operators, the inter-partition scheme is effective for the

more ambiguous and frequently encountered cases, where invariance is somewhat mitigated by

matching like-for-like appearance configurations against each other and the possible transforms

within each partition are less distinctive.

Mignon and Jurie [128] build a lower-dimensional space in which generality is preserved via

sparse annotation, and into which person observations from two cameras may be jointly projected

for more effective matching. Furthermore, their method applies the kernel trick to efficiently

compute and map the data into a higher-dimensional, non-linear space.

Most recently, Li et al. [110] introduce a Filter-Pairing Neural Network (FPNN). FPNN is,

uniquely, trained using several curated training strategies from deep learning to jointly learn a fea-

ture representation, invariance to geometric and photometric transforms between camera views

and matching of identity using a novel dataset comprising of six disjoint camera views and 13,164

images of 1,360 people. The dataset, named after it’s originating institution the Chinese Univer-

sity of Hong Kong (CUHK03), averages 4.8 images of the same person in each camera view. The

network’s convolution and max-pooling layers operate on colour patches sampled from paired

images of human detections, thus applying pairs of convolution filter banks before representation

as a vector of filter responses for each patch and contributing an analog to appearance transforma-

tion approaches mentioned previously. A separate patch matching layer matches patches between

horizontal partitions from the images, learning patch displacement matrices that encode potential

pose variations. This layer is subjected to a maxout-grouping step, with a winner-takes-all strat-

egy that only updates the foremost activations from the precedent layer, effectively sparsifying

filter responses and patch displacement. The process is repeated for a coarser grid of patches

at a larger scale, affording the opportunity for the network to learn more discriminative cues at
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different scales, similarly to recent work employing dense patch sampling and discussed in more

detail in Section 2.1.1. Finally, the softmax function classifies the pair of detections. During

training, the authors employ a curated range of strategies such as dropout, training image transla-

tion, data balancing and negative mining. Although effective on the CUHK03 dataset, validation

on established datasets is not complete and FPNN was only evaluated on CUHK01 where it was

outperformed by Kostinger et al.’s KISSME [94] at first-rank, and only performed comparably

thereafter. Although the network learns a complex array of transformations and invariances, this

does not guarantee performance on new, unseen surveillance views that may exhibit novel visual

diversity. Furthermore, FPNN is computationally expensive to train and due to the complexity

of the approach, may not scale to even larger volumes of data encompassing more camera views

except in an “online” setting where the training is continuous, centralised, and long-term.

Supervised learning methods can also be used in lieu of making any assumption as to the

nature of the distances between person signatures when matching; thus providing the means

to learn a relevant and discriminative distance metric for the re-identification task. Distance

metric learning (DML) can be used to infer either a global or local pairwise similarity metric

from a set of labelled labelled images [179, 39], commonly setting equivalence constraints [77]

and then formulating the task as a constrained convex programming problem [179, 41]. For

re-identification, such constraints signify whether two signatures refer to the same entity (i.e.

the same identity). Distinct from manually specifying a linear weighting for the combination

of disjoint feature spaces [47], DML instead assumes a complex nonlinear space can be found

to satisfy the re-identification task; aiming to maximise inter-person variation whilst minimising

intra-person variation. Classic DML label information is normally coded as pairwise constraints

on the data, being positive for equivalence constraints or negative for semantically dis-similar

pairs.

Dikmen et al. [41] employ a Support Vector Machine (SVM)-style approach to obtain such a

metric in their work using Weinberger and Saul’s [179] large margin nearest neighbour (LMNN)

classifier to learn a Mahalanobis metric that projects positive and negative pairs into a subspace

where they are maximally distant. Dikmen et al. further extend [179]’s method by introducing a

hard constraint for “imposters”, that is, false matches falling within a certain distance from true

matches are explcitly and forcefully rejected from the buffer zone by the cost function.

Hirzer et al. [77] apply dimensionality-reducing PCA step on a dense grid of sampled features
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prior to metric learning in order to select the best spatial locations and reduce the complexity of

learning a Mahalanobis metric using pairwise identity labels. However, a flaw in both approaches

is that the Mahalanobis metric itself is linear, leading to suboptimal performance on particularly

complex, non-linear data. Additionally, the computation of a full matrix that satisfies complex

constraints and remaining a valid metric (i.e. positive semi-definite) can be intractable. Hirzer et

al. reduce the dimensionality of the feature space and manually select the number of dimensions

to retain using PCA, which permits a valid pseudo-metric to be computed. However the overall

assumption is that the feature space can be reduced to a low dimensionality of 3̃0, whilst retain-

ing it’s discriminative strength. Not all features are compatible with this assumption, particularly

higher-dimensional features. Such features may be reduced to 1̃50 dimensions but would require

many more data instances than are normally available to construct a valid covariance matrix upon

which to learn a valid metric. Although Hirzer’s method is fast to execute for the standard bench-

mark datasets commonly used in re-identification research, it’s reliance upon low-dimensionality

mean it is not agnostic to all features.

Zheng et al. [188] reformulated the classic DML problem and minimised the probability that

a true-match pair will be closer together than a false-match pair, in a similar relativistic approach

to Prosser et al.’s RankSVM in [147]. Rather than operating directly to select or weight suitable

features as is implicit in most DML and later ranking approaches, Zheng’s method computes

and exploits probability cues, a second-order property more robust and less computationally

expensive.

Avraham et al. [6, 7] recast the standard re-identification problem as a binary classification

task and uses a SVM trained on positive and negative examples of matching and non-matching

human detections to train a discriminative re-identification classifier. Whilst effective at learning

the appearance transition between pairs of cameras, Avraham’s approach cannot scale practically

to real-world systems since it requires a quadratic number of annotated pairs on the number of

cameras in the network even assuming such transformations are commutative or bi-modal, and

Prosser’s [146], whilst bi-modal, uses whole-image representation in it’s current incarnation, and

does not actively select which modality to use when matching.

Supervised approaches to re-identification tend to perform better in comparison to either

engineered or unsupervised algorithms in both representation and matching contexts, hence in-

novative work belonging to one of these families of approach are normally compared with other
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members of the same category and not between categories. However, the cost of the generally

superior performance gained by using discriminatively trained models and representations is the

often substantial amount of human effort to provide sufficient volumes of data and labels with

which train said models.

2.2 Attributes as Discriminative Cues

One view of visual attributes is that they are a form of semantic, transferable auxiliary or directly

applied representation for higher-level vision tasks such as classification, recognition, descrip-

tion and retrieval [95, 97]. The use of attribute-based modelling for computer vision tasks is

relatively recent, first proposed by Ferrari and Zisserman [51] and becoming widely employed

in following years. One distinct property of most attribute research is that multiple attributes are

employed in concert as part of an ensemble of standard machine learning detectors or classifiers

that automatically assign human-semantic descriptive text labels to objects, entities or scenes.

Where attribute modelling differs from approaches that measure distances between low-level

statistical features or discriminate between identities or large numbers of classes, is that attributes

provide an intermediary basis that can assist in the high-level task by exploiting the low-level

features in a different setting. In essence, attributes can provide an alternate vocabulary at an

intermediary level, one that is inherently more expressive of higher-level semantics than the data

used to train the attribute.

Typically in attribute learning therefore, it is key to address such questions as (i) what ontol-

ogy of attributes to choose, (ii) how to learn them and perhaps most crucially, (ii) how to ensure

the attributes are complimentary to each other for re-identification.

2.2.1 Ontologies and Attribute Discovery

For many years, ontologies were the subject of much debate and disagreement in the artificial

intelligence community and in philosophy for much longer. One of the more elegant and concise

definitions casts the ontology as a “formal, explicit description of concepts” [133]. But what

concepts? Ontologies can be complex, multi-layered hierarchies or may be as simple as a flat

list of classes, depending on the application area. Determining the ontology of an attribute-based

system is often the foremost step, and a paradoxical one since we will not know which attributes

will be informative for a given task. However, we can reason that human intuition and expert
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knowledge will be useful, thus many attribute works tend to be motivated by human practices

and wisdom. Another key issue requires mention here as well as in Section 2.1.3; following the

definition of the ontology humans must annotate sufficient instances of data with which to train

a classifier of some kind to a reasonable level of detection accuracy.

The majority of recent work on attributes looks to human expertise in answer to the question

as to which attributes to learn [183, 173, 99, 51, 30, 100, 58, 141, 97, 96]. Where ontology

selection is not performed manually it is discovered automatically from a data source [18]. Hand-

picked ontologies can be thought of as being top-down and bottom-up. In the top-down case,

ontology selection may be predicated on the knowledge of experienced human domain-experts.

In the latter it may be based on the intuition of vision researchers, based on factors such as how

detectable an attribute might be with available methods or data availability. There is a distinction

between the selection of the ontology itself, and the discovery of an automated, data-driven

ontology; expert-defined ontologies are subjective but may not include discriminative attributes

beyond the experience of the expert, meanwhile data-driven ontologies are fundamentally not

semantically based except insofar as they reflect some statistical property such as frequency

[115].

Bottom-up attributes are often incrementally higher-order semantic terms as compared to

the low-level representation they are learned from. Commonly, these kinds of attribute learn-

ing focus on geometry, texture and chromatic attributes such as “red”, “striped” or “furry”

[51, 173, 100, 98, 184] or body-part localisation and classification of limbs, torsos, arms, heads

and legs [119, 48]. Most works in these categories focus building a mapping from the semantic

concept to visual pixel representations seen in the training data. In early work by Ferrari and

Zisserman [51] the authors probabilistically model the properties of elementary attributes using

their own intuition as to what humans find helpful in identifying and classifying objects, such

as colour (red, green, blue, yellow) and pattern (stripes, dots, checkerboard)1. The configuration

of neighbouring segments detections is used to infer slightly higher-order descriptions (stripes,

spots). The resulting ontology of attributes is therefore one of intuition; the authors select stan-

dard primary colours as well as green as well as three of the most rudimentary patterns, but do

not discuss their motives for doing so explicitly thus it is implied that these choices are based on

1In [51], attributes are categorised as binary and unary, and it may be helpful to the reader to contrast
the authors terminology with contemporary usage to avoid confusion; authors use binary and unary to
refer to the number of segments used to train attributes of each type, the contemporary definition of binary
attributes refers to attributes that are either present, or not.
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intuition. Another interesting observation about this work is that the authors heavily imply the

possibility of attributes being a transferrable context, suggesting that learning stripes from zebras

facilitates being able to learn stripy t-shirts. This theory is later directly examined by Lampert et

al. [99, 100], who introduced an important dataset for attribute research using animals labelled

according to expert findings from Osherson et al. [139].

Lampert, in a top-down approach, et al. annotated over 30,000 animal images according to

the 50 classes and 85 visual attributes defined by Osherson et al. Osherson et al. introduced an

ontology of animal “properties” (attributes), such as “nocturnal”, “domesticated”, “fierce”, “eats

plankton”, of which many are visual in some sense, and employed undergraduate volunteers to

review the list of animals and properties and annotate randomly chosen animals for the presence

of the 85 properties.

Van de Weijer et al. [173] explore a different interpretation of transferable context without

explicitly defining it as such, reporting that chromatic attributes learned from synthetic (though

human selected) colour “chips” are less successful than those attributes trained using real-world

photographs. However in some sense, the performance difference between synthetic and verus-

mundi training data could be seen as an effect of the modality change between the stable and

arbitrarily defined boundaries of the source colour spaces and the specific covariates present in

the images used for testing, thus an artefact of the transfer problem explored further by some

of the literature reported in 2.3.1. The authors select an ontology of colour attributes based on

historic expert research by Berlin and Kay [19]; later, Kuo, Khamis and Shet also select the same

ontology in [98]. Berlin and Kay present an ontology of colour attributes, partitioned discretely

into linguistic terms that the authors posited was indicative of the culture’s overall development.

Various cultures were studied and observed to have evolved linguistic terms for their perception

of colour and according to the evolutionary state of the dominant language, each culture shared

commonalities in it’s treatment of perceptual linguistic terms. For example, “stage 1” languages

only distinguish between “dark/cool” and “light/warm” colours and later stages up to “stage 8”

incorporating further colours in order, such as red at “stage 2”, either green or yellow at “stage

3” toward distinguishing between black, white and grey, yellow and orange at “stage 7”. Whilst

interesting from an anthropological perspective, colour as a soft biometric has been employed

to facilitate robust matching in the face of otherwise detriminental photometric variance in other

work [98, 184]; neither of which can conclusively determine that colour attributes alone are dis-
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criminative enough to be solely sufficient for good re-identification performance in real-world

systems. The main concern is that multiple people can potentially share identical person signa-

tures even when colour naming is applied to different items of apparel, thus more and potentially

non-chromatic attributes must be obtained for this reason.

In Chen et al.’s work [30], the authors introduce a never-ending learner based heavily on

previous work by Carlson et al., who define a process for iteratively refining an image description

system with access to constant streams of new data. Carlson et al. initialise their system manually

with an ontology of 123 categories of location (e.g. mountain, lake, city, museum), people (e.g.

scientist, writer, politician), animals (e.g. reptile, bird, mammal), organisation (e.g. company,

university), and miscellaneous others. Semantic relationships were also defined and part of the

ontology, describing putative links between different categories; such as that books are written,

and companies produce products. Each category was initialised with 10–15 seed instances and

the system is left to run long-term, ostensibly because of current computational limitations. In

both Carlson et al. and Chen et al.’s works, the goal is to begin with a small, seeded ontology of

attributes amidst knowledge of classes and relationships, with a view to discovering more over

time and the criterion with which Carlson et al. choose the initial ontology is again not discussed

but assumed to be sufficiently broad to permit additional concepts and attributes to be discovered

with every new iteration. Indeed, Carlson et al. report the first iteration results in almost 10,000

new “beliefs”, and subsequent iterations resulting in fewer, around 1,000 new “beliefs”. This

suggests that many of the discovered beliefs, predicates and attributes are indeed shared between

classes – particularly gratifying due to the scale of both works and in light of observations by

Lampert et al. in [99, 100].

Attributes themselves are not necessarily a final representation, but may be further augmented

by various strategies including other ontologies. Parikh and Grauman [141] cast attributes from

being binary (present or not) to being relative to one another, for example being able to describe

an image of a person as being “more smiley than ...” or “prettier than ...” another person. As

in previously discussed work, Parikh and Grauman rely on ontologies from human experts and

in this case the ontology is heavily inspired by or a subset of, ontologies released by Oliva and

Torralba in [135] and Kumar et al. in [96]. Kumar et al. engineered their ontology based on the

concept of “similes”, using 65 visual attributes recognisable from face images, such as gender,

race, age, hair colour and training such classifiers on vast quantities of human annotated data
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obtained using Amazon’s Mechanical Turk2. A key aspect to this research is the concept of

similes, where images of specific regions (e.g. mouth, eyes) of individual “reference” people are

first trained as weak learners in a simplified boosting framework as in [95]. The crucial idea is to

define an auxiliary ontology/human semantic basis composed of facial region classifiers trained

on images of specific people; this confers the ability to be able to classify how closely a new

person’s nose or eyes resemble the reference people and facilitates description by association

such as describing a person’s eyes as being similar to a particular celebrity (Figure 2.5 on the

next page. The two distinct ontologies, relative and binary attributes, are complimentary in this

work as well as remaining low-dimensional when compared to lower-level features.

Aside from top-down ontologies, bottom-up strategies can automatedly determine new at-

tribute ontologies or intermediate representations using statistical methods to analyse data ac-

cording to non-semantic assumptions. In a related work to Kumar et al., An et al. [4] use a

reference set of people to augment such an intermediate representation. At et al. proposed that in

addition to probe and gallery images, a separate reference set can be projected into a regularised

canonical correlation analysis (RCCA) subspace that maximises the correlation between probe

images from one camera, and gallery images from another. The reference set is thus likewise

projected into the same space enabling a relativistic basis as an auxiliary data source to other,

more low-level features and traditional re-identification matching techniques.

Van de Weijer et al. [173] explore a different interpretation of transferable context without

explicitly defining it as such, reporting that chromatic attributes learned from synthetic (though

human selected) colour “chips” are less successful than those attributes trained using real-world

photographs.

To summarise, an ontology of visual classes may be generated by an expert (top-down defini-

tion), or be discovered after mining a sufficient quantity of data. In the former case, it is often not

possible to determine the effectiveness of a given ontology a priori, a disadvantage since there

is no guarantee sufficient positive instances of a given attribute may be present in the available

data with which to train a capable visual classifier. In the latter case, this problem can be avoided

with a bottom-up, data-driven approach to attribute selection but at a penalty to how semantically

interpretable the resulting attributes are to humans. The following section examines the auto-

matic discovery of attributes, which can be viewed as a bottom-up way of determining a type of

2https://www.mturk.com/mturk/welcome
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Figure 2.5: Examples of “simile” classifiers from Kumar et al.’s work in [96]; Similes are a form
of auxiliary ontology capable of augmenting more traditional and direct attributes such as “hair
colour” or “gender”.

ontology as well.

2.2.2 Discovering Attributes Automatically

Attributes have been discussed in the context of being learned within a supervised framework,

where the semantic knowledge has been provided by human expertise. However, human ex-

pertise is finite in many respects and this approach requires an ontology of attributes as well as

sufficiently labelled instances to train classifiers for them. Sufficient quantities of labels are not

always available or available in sufficient volume (i.e. may be sparsely represented in the data),

or may contain annotation bias or errors. Furthermore, the human defined ontology will always

be intrinsically incomplete in the sense that it cannot be guaranteed to provide enough discrim-

inative information by itself to complete the task perfectly for every imaginable instance. Most

crucially it is impossible to determine how well the ontology can be classified a priori to training.

A collection of latent attributes may also be discovered in an unsupervised sense, by mining

data. In this case the domain-specific basis-set to be discovered normally conforms to statistical

properties that maximise the performance of the system on some task. An example of this form of
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Figure 2.6: Example training data used to construct classifiers capable of recognising elementary
visual attributes in Ferrari and Zisserman’s work [51]; images are decomposed into segments,
whereupon unary attributes like red may be learnt from entire segments and more complex at-
tributes such as stripes, (right) may be learnt from two (binary) neighbouring segments.

attribute discovery can be seen in principle component analysis (PCA, [85]), where the basis set

is selected such as that the maximally variant dimensions are the most useful bases upon which

to project the data. Several unsupervised bases have been successfully employed for dimension-

ality reduction and thus could be considered domain-specific attributes, where the bases favour

some property such as variance (i.e. principle component analyses, PCA [85]), or frequency (i.e.

topic models [24]), sparsity [55]. Neural networks can be taken as a further example. Supervised

approaches such as multi-layer neural network modelling [80, 110] learn to approximate contin-

uous functions in vector spaces using combinations of locally derived bases. Essentially, expert

defined annotations are used to train the network and the hidden layer of the network eventu-

ally becomes a complex set of attributes that facilitates the network’s performance on some task.

However, human interpretation of neural network layers is usually subjective, since no guarantee

is possible that the learned weights will have any definite semantic content or meaning.

Efforts to automatically learn semantically-meaningful ontologies and attributes exist and

normally seek to exploit existing bodies of information such as curated websites (e.g. for domain-

specific knowledge) or even the open Internet. Berg, Berg and Shih [18] take this approach in

order to discover visual attributes from retail product imagery depicting items of luxury apparel;

the aim being to determine (i) which semantic text in the product description describes (ii) which

region of the item depicted in the image (Figure 2.7 on the facing page).

So far, research encompassing both data-driven and human expert-defined attributes is rela-
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Figure 2.7: Examples from Berg, Berg and Shih’s [18] automatically discovered “handbag at-
tributes”, ordered by visualness.

tively sparse in comparison to solely data-driven or solely human expert-defined attribute discov-

ery methods. Liu and Kuipers [115] develop a unified framework for action attribute recognition,

where the ontologies of attributes employed are either manually defined or learned from the un-

derlying data. Since the two types of attribute are disparate, the potential distribution differences

between them could potentially be severe, however Liu and Kuipers employ a Latent SVM frame-

work similar to that used in [50] which simultaneously learns attribute and weighting together

thus addressing the problem illustrated in the previous section.

In [59], the authors also take the same approach and augment an ontology of human expert-

defined attributes with support from data-driven attributes. The authors learn a unified semi-latent

attribute space which represents the joint space of human-defined attributes as well as capturing

the natural structure and properties of the data that are not already included in the human expert’s

attribute definitions. Fu et al. further extend their ontology with a third, class-conditional attribute

type, inspired by [78].

To summarise, an ontology of attributes may be generated by an expert (top-down definition),

or be discovered after mining a sufficient quantity of data. In the former case, it is often not
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possible to determine the effectiveness of a given ontology a priori, a disadvantage since there

is no guarantee sufficient positive instances of a given attribute may be present in the available

data with which to train a capable visual classifier. In the latter case, this problem can be avoided

with a bottom-up, data-driven approach to attribute selection but at a penalty to how semantically

interpretable the resulting attributes are to humans.

2.2.3 Attribute Informativeness and Reliability

Although attribute reliability can be quantified by measuring the reported error against known

test data, detectability and discriminativeness (i.e. informativeness) are factors that may present

significant challenges for any “downstream” machine learning tasks reliant on attributes. Inter-

attribute interference may affect overall system performance on many predictive machine learn-

ing tasks to degrees that are a priori impossible to predict meaningfully before training time. One

admittedly perfunctory analogy available to us when describing a system that utilises intermedi-

ary representations such as attributes as part of a multi-layer model, is that of the neural network.

In the purely data-driven attribute case, the analogy is stronger still, since the data-driven at-

tributes are not necessarily semantically useful but provide a useful basis for the accomplishment

of some task - however where neural networks exploit algorithms like back-propagation in order

to learn the correct weight assignments for each “attribute” in the hidden layer, many modern

methods using attributes in this setting do not [99, 100] and thus the error inherent to the “raw”

attributes propagates downstream and penalises task performance [148, 166].

There can be no assurance of a particular ontology affording the level of discriminativeness

required for a theoretically “perfect” re-identification or retrieval system. As well as this, at-

tributes taken alone do not offer enough of a cue for automated re-identification or retrieval tasks,

hence they are used in collections; however when using multiple attributes in a collection, score

calibration becomes a significant concern. Simple concatenating or the stacking of attributes to-

gether as in [100] makes a significant assumption; that the raw attribute scores are all uniformly

distributed; which in fact may be far from true; additionally, methods that subsequently rely on

matching by attribute vector similarity are then ill-posed since distances will not conform to any

meaningful space, but rather to multiple overlapping and localised subspaces. Other work op-

erating on the assumption that attribute scores are Gaussian distributed include Siddiquie et al.

[159] and Zhu et al. [193]. Zhu et al. focus their efforts on reducing annotation ambiguity in their

manually selected ontology of attributes, only accepting a ground-truth annotation should it be
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supported by three votes and otherwise only accepting the assignment as tentative; however this

work solely investigates attribute classification performance using boosting methods and does

not directly make any effort toward ensuring the attributes are calibrated for further use. In Sid-

diquie et al., the authors investigate retrieval of faces via attributes using a ranking framework

that infers a set of additional discriminative attributes that support the initial query and incorpo-

rates learning the relative weightings of the support vectors as part of the model. Finally, the

previously mentioned work by Liu et al. [115], utilises a latent-SVM framework that likewise

jointly learns the correct weightings required to mitigate any downstream issues arising from the

uncalibrated “raw” attributes simultaneously with other variables.

One contrarily intuitive example of detectability, is that visual attributes such as “blue” or

“stripy” are not de facto more accurately predictable than non-visual attributes per se [100], and

non-visual attributes can themselves be learned to a high degree of accuracy in some cases where

enough visual correlations exist to support subsequent learning [100]. To further illustrate this,

a visual classifier may be able to predict an animal as being “smelly” if it resembles the visual

characteristics of a skunk, despite there being no direct visual cues alluding to the property itself.

2.3 Transfer Learning

A central limitation of most existing discriminative learning approaches is that they are only

tractable on closed-world benchmark problems than realistic volumes of data and real-scale sce-

narios. In particular discriminative learning methods often require many labelled instances for

training, a potentially costly and time-consuming process. An additional assumption is that this

training data must be from a target data domain, in order to learn and exploit the practical covari-

ates and distributions as present in the application domain and which are unique to that applica-

tion domain. In essence, the transfer learning task is to mitigate the distribution disparity between

domains. This is reasonable for training or testing splits on benchmark datasets that are already

exhaustively annotated by person identity or potentially for static re-identification systems that

will never be moved and consisting of few cameras. However it is highly impractical for real-

world use, where there may be very many pairs of cameras in a given network, each requiring

exhaustive annotation – and new cameras added over time. Therefore, such prerequisites would

render scaling systems to useful real-world levels would be impossible or prohibitively expen-

sive. Ideally, we would like to deploy a re-identification system between a pair of cameras with
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Figure 2.8: Learning processes for (a) common machine learning pipelines and to contrast, (b)
transfer learning pipelines, as presented in Pan and Yang’s survey of transfer learning research in
[140]

minimal calibration/training annotation. What a system learns from annotations of one camera

pair should be exploited by another pair without requiring exhaustive annotation in the new pair.

This is a main motivation for transfer learning [140, 45, 83], which is already important for

many classical vision problems such as object recognition [151] with multiple classes or domains.

However it is critically important for re-identification because the number of domains (camera

pairs) is quadratic in the number of cameras, thus Section 2.3.1 discusses this specific application

area in further detail. Obtaining exhaustive training data for every domain is even more imprac-

tical than for conventional vision applications, hence transfer learning becomes a critical tool in

avoiding this obstruction. In the following section, relevant background work is presented to the

reader as context for Chapter 3 which benefits from an initial commentary on transfer learning

and recent works within this field; secondly, in Section 2.3.1 we enumerate a narrower selection

of works exploiting transfer learning to good effect specifically for re-identification.

Transfer learning [140, 45, 83] has been used in numerous classical computer vision prob-

lems, for example object categorization [83, 151]. The motivation is typically to scale systems

to many classes [83] or domains [151, 45] without requiring prohibitive amounts of additional

training data for each new class or domain. While transfer learning is already an important issue

in classical vision tasks, it will turn out to be even more central to the re-identification prob-

lem. This is so since pairs define domains in this context, thus it is highly impractical to collect
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exhaustive training data for a quadratic number of domains.

Transfer learning research can be neatly categorised as belonging to one or more of three dis-

tinct research areas; determining what to transfer, how to transfer and when to transfer [140], of

which the most relevant to this thesis are the initial two in particular. Pan and Yang [140] further

summarise work on determining what to transfer as: instance-transfer, feature-representation-

transfer, parameter-transfer, or relational-knowledge-transfer problems.

One of the most simple transfer learning techniques but perhaps one of the more sensitive

to the sheer volumes of data available are the instance transfer methods [36, 111]. This setting

assumes that sufficient data co-exists in both classification domains, that the intersection, or coo-

current data, may be reused for the target domain by learning a new weighting for the source

domain. Dai et al. [36] do precisely this, by sparsely annotating data from the target domain and

identifying training instances that co-occur and with what distribution. By re-weighting training

data that has been discovered to violate the traditional AdaBoost assumption of identical distri-

bution among training and test data, the impact of data from the transgressing distribution can be

controlled and the effect of negative transfer mitigated. Lim et al.’s [111] contribution likewise

“borrows” specific instances from visually similar classes but takes the further step of applying

transformations to them in order to synthetically alter the training examples to be more informa-

tive about the target class, for example stretching images of armchairs to better visually resemble

sofas, or learning that “toilets” resemble aspects of “cups” and “saucers”. However, the assump-

tion this approach makes is that a sufficiently varied collection of object classes is available and

labelled, such that there are sufficient data sources to reliably generate new synthesised instances

for the target class is definitely available for transformation, and that such transformations suc-

cessfully resemble new instances of the target class. One may envisage this approach working

well for say, cars or other rigid artefacts, but less well for deformable objects, or for classes with

much more extreme intra-class visual variations.

One of the classical motivations for transfer learning is the avoidance of onerous annotation

work although most transfer methods still require at least some annotated data to work with. One

of the first works in this field was contributed by Li, Fergus and Perona [49], where transfer

learning was achieved by constructing a Bayesian prior from a generic model learned from set of

objects. The previously encountered, known model forms a kind of intermediate representation

which was exploited to describe a novel target model’s parameter distribution. Li et al. achieve
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this with a simplistic and generalised prior determined from just three initial classes, thus their

approach may only improve on target classes with some relevance to the prior. Another open

question with this work is whether other priors may be more useful, and if so, how to construct

them and from what data? Another form of model-transfer was suggested by Tommasi et al.

[169], that sought to address these questions some years later. Tommasi et al. considered mul-

tiple separate source models and introduced a discriminative approach to determine the linear

combination of source classifiers that best describe the novel target class of data, thus address-

ing the principle questions of what to transfer and simultaneously calibrating (i.e. determine

relevance weighting) how much to transfer from each source. Tommasi et al. further tune the

transfer process according to specific performance at the target task, however the authors do not

examine the same approach for tasks other than recognition, such as retrieval.

Feature-centric transfer methods construct representations that are robust to inter-domain

variation, whilst preserving statistical or geometric properties useful for computer vision tasks,

or for which inter-domain mappings can be computed in order to minimise differences in either

marginal or conditional distributions. The key task is normally to discover some combination of

previously computed features or property of features that assists in the target domain. Ruckert and

Kramer [150] do so by treating this task as a meta-learning problem. The authors first proceed

by determining kernels and their parameters for each source domain as with a standard kernel

classifier but note that this standard approach leads to full rank kernel matrices due to aggressive

regularisation and therefore the balance between generalising to new domains and remaining

discriminative on the source domain is very much biased toward the latter. To avoid this the

authors adjust the standard SVM learning paradigm and kernelise a form of cross-validation that

ensures a restricted pool of potential kernels for the optimisation step, but provides an evaluation

step with the entire source domain so as to encourage generalisable solutions. The differences

between the learnt kernels can then be exploited to generate a kernel and classifier for the target

domain.

Typically, most transfer methods including Ruckert and Kramer’s require labelled target data.

However, Long et al. [118] posit a method for representation learning that accomplishes these

goals without the requirement for labels on the target domain. In order to achieve this, the

authors adapt the joint distributions such that the expectations are matched between domains,

however this is a nontrivial goal where there is no labeled data available. The authors reduce the
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difference between both conditional and marginal distributions, since minimising the difference

between conditional distributions does not explicitly do the same for the marginal distributions.

Because of the lack of labels and therefore no discriminative statistics available on the target,

the authors approximate using “pseudo labels”, or labels obtained by blindly applying source

domain-trained classifiers on the target domain. In essence the assumption is that the target

domain’s class-conditional distribution of pseudo-labels and source domain’s class-conditional

distribution of ground truth labels, as well as the source and target marginal distributions can be

pulled closer together whilst ensuring the target domain’s variance is maximised, thus ensuring

the preservation of the properties that assist in classification tasks.

2.3.1 Transfer for Re-identification

In this section it is helpful to clarify that we consider a pair of person detections to make up

a domain, and this should not be confused with some other studies which consider a particular

camera to be a domain [151]. This consideration implicitly represents the fact that we require

a visual appearance mapping function between detections obtained from distinct camera views.

For classification [151] and detection [45], an individual camera encompasses the notion of a

domain because a camera’s parameters impart a systematic impact on the observations, which

the model must learn to interpret. However in re-identification, the task for transfer learning is

to infer something about pairs of observations, and the systematic impact of each dynamic scene

on person appearance is therefore defined by the pair of cameras.

The pertinent issue in transfer learning [140] is the question of where to transfer from. When

there is only one source of information available, and that source is known to be highly relevant

to the task of interest, then transfer learning is much simpler than in the more general and realistic

case where there are multiple sources of information of greatly varying and potential relevance.

In this latter case, it is non-trivial to design models which avoid negative transfer [140]. Our

problem of transferring mappings across camera pairs falls squarely into the latter more difficult

case. Since the relevance of one camera pair to another depends on similarity in their viewing

angles and lighting, many pairs will not be similar and working out which source is best to

transfer from is of critical importance.

Only very recently has transfer learning for re-identification begun to be considered [109,

191, 105, 121]. However these studies mostly consider only improving within-domain (camera

pair) re-identification by transferring knowledge learned from one group of people to help iden-
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tify another group of people. This is intrinsically a much more restricted scenario than the more

general and useful case of transferring across domains to permit re-identification in a new camera

pair with sparse annotations.

Wu et al. [105] present the first general investigation of transfer learning for re-identification

on a range of datasets. The authors argue that two pre-conditions must be met in order for feature-

transfer approaches to help re-identification; source and target domain tasks must be related and

sufficient observations of each “class” must exist, from which we infer the authors mean that

multi-shot re-identification may be the main beneficiary of this family of transfer methods. Sec-

ondly, instance-selection methods are more beneficial than directly trying to learn an appearance

mapping function, and thirdly that insufficient data in the different domains necessitates methods

that thrive on sparse data or reduced numbers of annotations available.

Ma et al. [121] likewise investigate transfer learning for re-identification, employing a strat-

egy reminiscent of aspects of Long et al.’s work [118]. The motivation behind this is to avoid

extensive annotation of positive and negative pairs of individual person detections by modelling

only the negatives which can be easily generated (and which are far more numerous), and estimat-

ing the positive-pair model parameters rather than learning them discriminatively then exploiting

the assumption that the difference between positive and negative models will be similar for both

domains. Interestingly, the work shows that the estimation error is invariant to the true means

of positive and negative pairwise data from the source and target domains respectively; where

the error can be bounded by negative instances only. This avoids the requirement for exhaustive

annotation and enables a source model to be transferred to the target domain without onerous

annotation cost.

Li et al. [109] highlight the fact that many works pursuing transfer learning for re-identification-

related applications assume that the target domain consists of a sufficient quantity of data so

as to be representative of the ongoing operation of the camera from which it is drawn; this is

particularly salient since it exposes one assumption made by transfer-learning approaches for re-

identification, i.e. that for real-world use these techniques require “chunks” of data extracted over

time, and are thus applied to similar chunks which precludes their immediate use in real-time.

In Zheng et al.’s [191] work, the authors redress the problem as a binary verification task

rather than the traditional person re-identification problem, where verification refers to whether

the query person is on the watchlist or is just one of many unknown candidates (imposters). This
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approach makes a strong assumption; that the re-identification task is specifically the watchlist

verification task. Furthermore it is limited twofold; (i) it operates on individual query probes

one-at-a-time, rather than being able to operate on all possible query probes in a “batch”, and

(ii) requires discriminative training on each pair of cameras. This work differs to most current

transfer learning research in that rather than explicitly transferring knowledge of appearance, it

aims to transfer a bipartite ranking function based on the difference between target and non-target

person detections in each domain. The goal, therefore, is to directly predict a ranked candidate

set containing the targets by exploiting second-order statistics (mutual information) rather than

directly operating on appearance.

2.4 Summary

The dramatic rise in surveillance data volume has created a substantial deficit that has yet to be

fully addressed but for which the application of machine learning, computer vision-based algo-

rithms is almost certainly the only tenable solution. Recent research has enjoyed success but on

closed-world, densely annotated scenarios [47, 186, 94, 6] where discriminative learning meth-

ods can leverage human expertise and with sufficiently diverse data, model requisite higher-level

concepts such as binary attributes with some success. However, with consideration to the wide

variety of practical covariates inherent to surveillance scenes, as well as the degree of challenge

presented by the full range of all possible human appearance variations, hand-crafted low-level

features cannot maintain sufficient performance across all possible real-world surveillance scenes

and there is no intuition for the human operator who must parse the results, presented directly

from the feature-space. Furthermore, representations for re-identification are often engineered

with specific scenes or data in mind and do not generalise, or with specific assumptions as to the

importance of each visual property that likewise do not hold for each new surveillance scene.

Discriminative methods can be trained to yield substantially more suitable visual representations

that lend themselves better to the downstream task of re-identification, however this relies on the

availability of suitable volumes of both data and annotations to be successful. Discriminative

methods can also be used to explicitly model the appearance change between cameras, however

they are rarely scalable in terms of being able to deploy such methods onto large CCTV camera

networks such as those seen in the real-world. The dominating reason for this is the quadratic

amount of human annotation effort as the number of cameras rises, particularly apparent for those
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methods that rely on pairwise training data in order to explicitly model inter-camera appearance

change [6, 94]. Finally, the re-identification community has focussed on a standard formulation

of the re-identification task that assumes at least two cameras and a closed set of probe images

and gallery images, with the expectation of a one-to-one match being possible for all probes.

In the real world, these assumptions may prove too strong due to an arbitrary number of “im-

posters” being present in the relevant gallery set, the availability of new sources of surveillance

data featuring different visual covariate properties and dynamic environments where modelling

every ingress and egress point is impossible.

This thesis addresses such challenges. It introduces a new human-semantic, visual represen-

tation in Chapter 3 that bridges the semantic gap between human operators and surveillance task

operational requirements. In Chapters 4 and 5 two distinct methods for addressing the challenge

of scaling surveillance systems to fulfil real-world requirements are developed and reported. In

Chapter 6, the question of whether such systems could function for mobile re-identification plat-

forms is raised and we break new ground by introducing a novel dataset and preliminary study

of this exciting new research direction.
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Chapter 3

Human Attributes

In this chapter, we take inspiration from the operating procedures of human experts [132, 174,

32] and recent research in attribute learning for classification [99] in order to introduce a new

mid-level semantic attribute representation of humans that incorporates view invariance between

public spaces, “zero-shot” queries for cases where an initial visual observation is unavailable, and

moreover we show how to complement this new representation with a simple discriminatively

trained metric.

In order to initially define what we refer to as attributes, we observe that when performing

person re-identification, human experts rely upon matching appearance or functional attributes

that are discrete and unambiguous in interpretation, such as hair-style, shoe-type or clothing-

style [132]. This is in contrast to the continuous and more ambiguous quantities measured by

contemporary computer vision based re-identification approaches using visual features such as

colour and texture [67, 147, 47]. This attribute-centric representation is similar to a description

provided verbally to a human operator, e.g. by an eye-witness. We call this task attribute-profile

identification, or zero-shot re-identification. Furthermore, we will show in our study that humans

and computers have important differences in attribute-centric re-identification. In particular de-

scriptive attributes that are favoured by humans may not be the most useful or computable for

fully automated re-identification because of variance in the ability of computer vision techniques

to detect each attribute and variability in how discriminative each attribute is across the entire

population.

This approach of measuring similarity between attributes rather than within the feature-space
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has two advantages: (i) it allows visual re-identification (from a probe image) and semantic

identification (from a verbal description) to be performed in the same representational space; and

(ii) as attributes provide a very different type of information to low-level features, which can

be considered a separate modality, they can be fused together with low-level features to provide

more accurate and robust re-identification.

3.1 Problem Definition

3.1.1 Attributes as Representation

Attribute based modelling has recently been exploited to good effect in object [99] and action

[115, 58] recognition. To put this in context: in contrast to low-level features or high-level classes

or identities, attributes provide the mid-level description of both classes and instances. There are

various unsupervised (e.g. PCA or topic-models) or supervised (e.g. neural networks) mod-

elling approaches which produce data-driven mid-level representations. These techniques aim to

project the data onto a basis set defined by the assumptions of the particular model (e.g. maximi-

sation of variance, likelihood, or sparsity). In contrast, attribute learning focuses on representing

data instances by projecting them onto a basis set defined by domain-specific axes which are

semantically meaningful to humans. Recent work in this area has also examined the exploitation

of the constantly growing semantic Web in order to automatically retrieve visual data correlating

to relevant metatext [51] and vice-versa for visual retrieval using metatext queries [153].

Semantic attribute representations have various benefits: (i) in re-identification, a single pair

of images may be available for each target – which can be seen as a challenging case of “one-

shot” learning. In this case attributes can be more powerful than low-level features [99, 159, 115]

because they provide a form of transfer learning as attributes are learned from a larger dataset a

priori; (ii) they can be used synergistically in conjunction with raw data for greater effectiveness

[115]; and (iii) they are a suitable representation for direct human interaction, therefore allowing

searches to be specified, initialised or constrained using human-labelled attribute-profiles [99,

159, 97].

3.1.2 Attributes for Identification

One view of attributes is as a type of transferable context [189] in that they provide auxiliary

information about an instance to aid in (re-)identification. Here they are related to the study of
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soft-biometrics, which aims to enhance biometric identification performance with ancillary in-

formation [82, 38]. High-level features such as ethnicity, gender, age or indeed identity itself

would be the most useful to us for re-identification. However, soft biometrics are exceptionally

difficult to reliably compute in typical surveillance video as visual information is often impover-

ished and individuals are often at “stand-off distances” as well as in unconstrained or unknown

viewing angles.

Alternatively attributes can be used for semantic attribute-profile identification (c.f. zero-shot

learning [99]), in which early research has aimed to retrieve people matching a verbal attribute

description from a camera network [174]. However, this has only been illustrated on relatively

simple data with a small set of similarly-reliable facial attributes. We will illustrate in this study

that one of the central issues for exploiting attributes for general automated (re)-identification is

dealing with their unequal and variable informativeness and reliability of measurement from raw

imagery data.

In this chapter, we move towards leveraging semantic mid-level attributes for automated

person identification and re-identification. Specifically, we make four contributions as follows.

(i) In Section 3.2.1 we introduce an ontology of attributes (see Table 3.1 on page 83) based on

a subset from a human expert defined larger set [132]. These were selected for being relatively

more reliable to compute whilst also discriminative for identification in typical populations. (ii)

We evaluate our ontology from the perspective of both human-centric and automation-centric

purposes and discuss considerations for successful ontology selection. (iii) In Section 3.2.6 on

page 89 we show how to learn an attribute-space distance metric to optimally weight attributes

for re-identification, and do so in a synergistic way with low-level features. (iv) We evaluate our

model in Section 3.3 and show significantly improved re-identification performance compared to

conventional feature-based techniques on the two largest benchmark datasets. In the subsequent

sections, we provide additional analysis and insight into the results, including contrast against

zero-shot re-identification from attribute-profile descriptions.

3.2 Computing Attributes for Re-identification

3.2.1 Ontology Selection

The majority of recent work on attributes looks to human expertise in answer to the question as to

which attributes to learn. Typically, ontology selection is performed manually prior to research
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or via learning from existing metadata [18]. Recall from Section 2.2.1 on page 62 that hand-

picked ontologies can be broadly categorised as top-down and bottom-up. In the top-down case,

ontology selection may be predicated on the knowledge of experienced human domain-experts.

In the latter it may be based on the intuition of vision researchers, based on factors such as how

detectable an attribute might be with available methods or data availability.

For the purpose of automated re-identification, we are concerned with descriptions that per-

mit us reliably discriminate; that is to say we wish to eliminate identity ambiguity between in-

dividuals. Ontology selection therefore is guided by two factors: computability and usefulness.

That is, detectable attributes, which can be detected reliably using current machine learning

methods and available data [58], and discriminative (informative) attributes which, if known,

would allow people to be effectively disambiguated [124].

The notion of discriminative attributes encompasses a nuance. Humans share a vast prior pool

of potential attributes and experience. If required to describe a person in a way which uniquely

identifies them against a gallery of alternatives, they typically choose a short description in terms

of the rare attributes which uniquely discriminate the target individual (e.g. “imperial mous-

tache”). In contrast, in the ideal discriminative ontology of attributes for automated processing,

each attribute should be uncorrelated with all others, and should occur in exactly half of the pop-

ulation (e.g. male versus female). In this way no one attribute can distinguish a person uniquely,

but together they effectively disambiguate the population: a “binary search” strategy. There are

two reasons for this: constraining the ontology size, and training data requirement.

Ontology size: Given a “binary search” ontology, any individual can be uniquely identified

among a population of n candidates with only an O(log(n)) sized attribute ontology or descrip-

tion. In contrast, the single rare-attribute strategy favoured by people means that while a person

may be identified with a short length 1 attribute description, an ontology size and computation

size O(n) may be required to describe, interpret and identify this person.

Training data: We employ individual “binary” classifiers to model our ontology, thus each train-

ing image may be re-used and be (equally) informative for all n attributes (attributes are typically

positive for half the images). In contrast, the single rare-attribute strategy would require an infea-

sible n times as much training data, because different data would be needed for each attribute (e.g.

finding a significant number of wearers of imperial moustaches) to train the detectors. In practice,

rare attributes do not have enough training data to learn good classifiers, and are thus not reliably
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detectable. A final consideration is the visual subtlety of the attributes, which humans may be

able to easily pick out based on their lifetime of experience but which would require prohibitive

amounts of training data as well as feature/classifier engineering for machines to detect.

Whether or not a particular ontology is detectable and discriminative cannot therefore be

evaluated prior to examination of representative data. However, given a putative ontology and a

representative and annotated training set, the detectability of the ontology can be measured by

the test performance of the trained detectors whilst the discriminativeness of the ontology can

be measured by the mutual information (MI) between the attributes and person identity. The

question of how to trade off discriminativeness and detectability when selecting an ontology on

the basis of maximum predicted performance is not completely clear [101, 102]. However, we

will take some steps to address this issue in Section 3.2.6 on page 89.

Figure 3.1: Positive instances of our ontology from (top) the VIPeR and (bottom) the PRID
datasets.

redshirt blueshirt lightshirt

darkshirt greenshirt nocoats

notlightdarkjeanscolour darkbottoms lightbottoms

hassatchel barelegs shorts

jeans male skirt

patterned midhair darkhair

bald hashandbagcarrierbag hasbackpack

Table 3.1: Our attribute ontology for re-identification.
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3.2.2 Ontology Creation and Data Annotation

Given the considerations discussed in the previous section, we select our ontology jointly based

on four criteria. (i) We are informed by the operational procedures of human experts [132] as

well as (ii) prioritising suitable findings from [176, 101, 102, 153], (iii) whether the ontology is

favourably distributed in the data (binary search) and (iv) those which are likely to be detectable

(sufficient training data and avoiding subtlety).

Specifically, we define the following space of Na = 21 binary attributes (Table 3.1 on the

preceding page). Ten of these attributes are related to colour, one to texture and the remaining

ten are related to soft biometrics. Figure 3.1 on the previous page shows a visual example of each

attribute.

Human annotation of attribute labels is costly in terms of both time and human effort. Due

to the semantic nature of the attributes, accurate labelling can be especially challenging for cases

where visual data can be impoverished. Typically problems can arise where (i) ontology defini-

tion allows for ambiguity between members of the ontology, and (ii) boundary cases are difficult

for an annotator to classify according to a binary system with confidence. These circumstances

can be natural places for subjective labelling errors [161].

To investigate the significance of this issue, we independently double-annotated the Person

Re-ID (PRID) dataset [75] for our attribute ontology. Figure 3.2 illustrates frequency of label

disagreements for each attribute in the PRID dataset measured as the Hamming distance between

all annotations for that attribute across the dataset:

Figure 3.2: Annotation disagreement error frequencies for two annotators on PRID.
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Figure 3.3: Top 5 pairs of pedestrian detections in PRID where annotators disagreed most (top
row). Annotator #1’s labels (middle), Annotator #2’s labels (bottom). Each row is an attribute-
profile for a pair of detections, columns are attributes and are arranged in the same order as
Fig 3.2 on the facing page.

For attributes such as shorts or gender, uncertainty and therefore error is low. However,

attributes whose boundary cases may be less well globally agreed upon can be considered to

have the highest relative error between annotators. For example, in Figure 3.2 on the preceding

page attributes hassatchel and darkhair are most disagreed upon since lighting variations make

determining darkness of hair difficult in some instances and satchel refers to a wide variety of

rigid or non-rigid containers held in multiple ways. This means that attributes such as darkhair

and hassatchel may effectively be subject to a significant rate of label noise [194] in the training

data and hence perform poorly. This adds another source of variability in reliability of attribute

detection which will have to be accounted for later. Figure 3.3 illustrates pairs of individuals

in the PRID dataset whose shared attribute-profiles were the most disagreed upon. The figure

highlights the extent of noise that can be introduced through semantic labelling errors, a topic we

will revisit later in Section 3.2.6 on page 89.
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3.2.3 Feature Extraction

To detect attributes, we first select well-defined and informative low-level features with which

to train robust classifiers. We wish to choose a feature which is also typically used for re-

identification in order to enable later direct comparison between conventional and attribute-space

re-identification in a way which controls for the input feature used. The descriptors we used for

re-identification include the Symmetry Driven Accumulation of Local Features (SDALF) [47]

and Ensemble of Localised Features (ELF) [68].

The content of our ontology includes semantic attributes such as jeans, shirt colours, gender.

We can infer that the information necessary for humans to distinguish these items is present

visually, and wish to select a feature that incorporates information pertaining to colour, texture

and spatial information. For our purposes, SDALF fulfils the requirements for our ontology but

does not produce positive semi-definite distances, therefore ruling it out for classification using

kernel methods. Alternatively, we therefore exploit ELF.

To that end, we first extract an 2784-dimensional low-level colour and texture feature vector

denoted x from each person image I following the method and parameters used in [147]. This

consists of 464-dimensional feature vectors extracted from six equal sized horizontal strips from

the image. Each strip uses 8 colour channels (RGB, HSV and YCbCr) and 21 texture filters

(Gabor, Schmid) derived from the luminance channel. We use the same parameter choices for

γ , λ , θ and σ2 as proposed in [147] for Gabor filter extraction, and for τ and σ for Schmid

extraction. Finally, we use a bin size of 16 to quantise each channel.

3.2.4 Attribute Detection

Classifier training and attribute feature construction

We train a Support Vector Machine (SVM) [155] for each attribute. We use Chang et al.’s LIB-

SVM [28] and investigate Linear, RBF, χ2 and Intersection kernels. We select the intersection

kernel as it compares closely with χ2 but is faster to compute. Our experiments on LIBSVM

performance vs. attribute training time show the intersection kernel as being a good combina-

tion of calculation time and accuracy. For example, training the attribute ontology results in

65.4% mean accuracy with 0.8 hours training for the intersection kernel, as compared to the χ2

kernel (63.8% with 4.1 hours), the RBF kernel (65.9% with 0.76 hours and the linear kernel

(61.8% with 1.2 hours) respectively with LIBSVM. Although RBF is computed slightly faster



3.2. Computing Attributes for Re-identification 87

and has similar accuracy, we select the intersection kernel overall, since an RBF kernel requires

two parameters which would require additional cross-validation, and we can avoid this with the

intersection kernel with little penalty. Providing LibSVM with pre-built kernels reduces training

time considerably in all cases.

For each attribute, we perform cross validation to select values for SVM slack parameter

C from the set C ∈ {−10, . . . ,10} with increments of ε = 1. The SVM scores are probability

mapped, so each attribute detector i outputs a posterior p(ai|x). We follow the standard approach

for mapping SVM scores to posterior probabilities [144] as implemented by libSVM [28].

Spatial Feature Selection

Since some attributes (e.g. shorts) are highly unlikely to appear outside of their expected spatial

location, one might ask whether it is possible to improve performance by discriminatively select-

ing or weighting the individual strips within the feature vector (Section 3.2.3 on the facing page).

We experimented with defining a kernel for each strip as well as for the entire image, and training

multi-kernel learning SVM using the DOGMA online kernel learning library with Online-Batch

Strongly Convex mUlti keRnel lEarning (Obscure) method as in [136, 46]. This approach dis-

criminatively optimises the weight for each kernel in order to improve classifier performance and

has been shown to improve performance when combining multiple features. However in this case

it did not reliably improve on the conventional SVM approach, presumably due to the relatively

sparse and imbalanced training data being insufficient to correctly tune the inter-kernel weight.

Imbalanced Attribute Training

The prevalence of each attribute in a given dataset tends to vary dramatically and some attributes

have a limited number of positive examples in an absolute sense as a result. This imbalance can

cause discriminative classifiers such as SVMs to produce biased or degenerate results. There are

various popular approaches to dealing with imbalanced data [72], such as synthesising further

examples from the minority class to improve the definition of the decision boundary, for example

using SMOTE [29] or weighting SVM instances or mis-classification penalties [72, 2]. However,

neither of these methods outperformed simple subsampling in our case.

To avoid bias due to imbalanced data, we therefore simply train each attribute detector with

all the positive training examples of that attribute, and obtain the same number of negative exam-

ples by sub-sampling the rest of the data at regular intervals.
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Mid-level Attribute Representation

Given the learned bank of attribute detectors, at test time we generate mid-level features as 1×Na

sized vectors of classification posteriors which we use to represent the probability that each

attribute is present in the detection. Effectively we have projected the high dimensional, low-

level features onto a mid-level, low-dimensional semantic attribute space. In particular, each

person image is now represented in semantic attribute space by stacking the posteriors from each

attribute detector into the Na dimensional vector: A(x) = [p(a1|xi), . . . , p(aNa |xNa)]
T .

3.2.5 Attribute Fusion with Low-level Features

The attribute representation, since it is trained using human expertise, encodes substantially dif-

ferent information to the LLFs used in it’s training. Because of this, the trained attribute repre-

sentation remains synergistic with and complementary to low-level features, meaning that we are

able to fuse LLF representations with the attribute representation for better performance.

To use our attributes for re-identification, we can define a distance solely on the attribute

space, or use the attribute distance in conjunction with conventional distance between low-level

features such as SDALF [47] and ELF [67]. SDALF provides effective features for a non-learning

nearest-neighbour (NN) approach while ELF has been widely used by model-based learning

approaches [147, 187]. We also use it as the feature for our attribute detectors in Section 3.2.3

on page 86.

We therefore introduce a rather general formulation of a distance metric between two images

Ip and Ig which combines both multiple attributes and multiple low-level features as follows:

dwL,wA (Ip, Ig) = ∑l∈LL wL
l dL

l (Ll (Ip) ,Ll (Ig))+ dA
wA (A(Ip),A(Ig))) . (3.1)

Here Equation (3.1), the first term corresponds to the contribution from a set LL of low-level

distance measures, where Ll(Ip) denotes extraction of type l low-level features from image Ip,

dL
l denotes the distance metric defined for low-level feature type l, and wL

l is a weighting factor

for each feature type l. Equation (3.1) (second term) corresponds to the contribution from our

attribute-based distance metrics. Where A(Ip) denotes the attribute encoding of image Ip. For

the attribute-space distance we experiment with two metrics: weighted L1 (Equation 3.2 on the

facing page) and weighted Euclidean (Equation 3.3 on the next page).
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dA
wA(Ip, Ig) = (wA)T |(A(xp)−A(xg))| , (3.2)

dA
wA(Ip, Ig) =

√
∑

i
wA

i (p(ai|xp,i)− p(ai|xg,i))
2. (3.3)

3.2.6 Attribute Selection and Weighting

As discussed earlier, all attributes are not equal due to variability in how reliably they are mea-

sured due to imbalance, subtlety (detectability) and how informative they are about identity (dis-

criminability). How to account for variable detectability and discriminability of each attribute

(wA), and how to weight attributes relative to low-level features (wLL) are important challenges

which we discuss now.

Exhaustively searching the Na dimensional space of weights directly to determine attribute

selection and weighting is computationally intractable. However, we can re-formulate the re-

identification task as an optimisation problem and apply standard optimisation methods [131] to

search for a good configuration of weights.

Importantly, we only search |wA|= Na = 21 parameters for the within-attribute-space metric

dA
wA(·, ·). and one or two parameters for weighting attributes relative to low-level features. In

contrast to previous learners for low-level features [147, 188, 192] which must optimise hun-

dreds or thousands of parameters, this gives us considerable flexibility in terms of computation

requirement of the objective.

An interesting question is therefore what is the ideal criterion for optimisation. Previous

studies have considered optimising, e.g. relative rank [147] and relative distance [192, 75]. While

effective, these metrics are indirect proxies for what the re-identification application ultimately

cares about, which is the average rank of the true match to a probe within the gallery set, which

we call Expected Rank (ER). That is, how far does the operator have to look down the list before

finding the target. See Section 3.3 for more discussion.

We introduce the following objective for expected rank:

ER =
1
|P| ∑p∈P

∑
g∈G

Lw (Dpp,Dpg)+λ ‖ w−w0 ‖, (3.4)

where Dpg is the matrix of distances, from probe image p to gallery image g; Lw is a loss function

which can penalise the objective according to the relative distance of the true match Dpp versus

false matches Dpg; and w0 is a regulariser bias with strength λ . To complete the definition of the

objective, we define the loss function L as in Equation (3.5 on the following page) where I is an
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indicator function which returns 1 when the parameter is true. That is, imposing a penalty every

time a false match is ranked ahead of the true match. The overall objective, Equation (3.4 on the

previous page) thus returns the expected rank of the true match. This is now a good objective,

because it directly reflects the relevant end-user metric for effectiveness of the system. However

it is hard to efficiently optimise because it is non-smooth: a small change to the weights w may

have exactly zero change to the expected rank (the optimisation surface is piece-wise linear). We

therefore soften this loss-function using a sigmoid, as in Equation (3.6), which is now smooth

and differentiable. This finally allows efficient gradient-based optimisation with Newton [114]

or conjugate-gradient methods [131].

LHardRank,ER
w = I(dpp−dpg > 0) . (3.5)

LSigmoid,ER
w = σ (dpp−dpg) . (3.6)

We initialise winitial = 1. To prevent over fitting, we use regularisation parameters w0=1, and

λ = 0.2 (i.e., all weights are assumed to be equally important a priori) and set the sigmoid scale

to k = 32. Finally we perform fusion with low-level features, Equation 3.1 on page 88, using

both SDALF and ELF.

In summary, this process uses gradient-descent to search for a setting of weights w for each

LLF and for each attribute, Equation (3.1 on page 88) that will (locally) minimise the expected

rank within the gallery of the true match to each probe image, Equation (3.4 on the previous

page). See Algorithm 1 on the facing page for an overview of our complete system.

3.3 Experiments

3.3.1 Datasets

We select two challenging datasets with which to validate our model, the Viewpoint Invariant

Pedestrian Recognition dataset (VIPeR) [67] and PRID [75]. VIPeR contains 632 pedestrian

image pairs from two cameras with different viewpoint, pose and lighting. Images are scaled to

128x48 pixels. We follow [67, 47] in considering Cam B as the gallery set and Cam A as the

probe set. Performance is evaluated by matching each test image in Cam A against the Cam B

gallery.

PRID is provided as both multi-shot and single-shot data. It consists of two camera views

overlooking an urban environment from a distance and from fixed viewpoints. As a result PRID

features low pose variability with the majority of people captured in profile. The first 200 shots
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Algorithm 1 Attributes-based Re-identification
Training

for each Attribute do

Subsample majority class to length of minority class

Cross-validate to obtain parameter C that gives best average accuracy.

Retrain SVM on all training data with selected C

end for

Determine inter and intra-attribute weighting w by minimising Equation (3.4 on page 89).

Testing (Re-identification)

for each Person xg ∈ gallery set do

Classify each attribute a

Stack attribute posteriors into person signature A(xg).

end for

for each Person xp ∈ probe set do

Classify each attribute a

Stack attribute posteriors into person signature A(xp).

Compute distance to gallery set fusing attribute and LLF cues with weight w. (Equation

(3.1 on page 88))

Nearest-neighbour re-identification in gallery according to their similarity to person xp.

end for

in each view correspond to the same person, however the remaining shots only appear once in

the dataset. To maximise comparability with VIPeR, we use the single-shot version and use the

first 200 shots from each view. Images are scaled to 128x64 pixels.

For each dataset, we divide the available data into training, validation and test partitions. We

initially train classifiers and produce attribute representations from the training portion, and then

optimise the attribute weighting as described in Section 3.2.6 on page 89 using the validation set.

We then retrain the classifiers on both the training and validation portions, while re-identification

performance is reported on the held out test portion.

We quantify re-identification performance using three standard metrics and one less common
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metric. The standard re-identification metrics are performance at rank n, cumulative matching

characteristic (CMC) curves, and normalised area under the CMC curve [67, 47]. Performance

at rank n reports the probability that the correct match occurs within the first n ranked results

from the gallery. The CMC curve plots this value for all n, and the nAUC summarises the area

under the CMC curve (so perfect nAUC is 1.0 and chance nAUC is 0.5).

We additionally report Expected Rank (ER), as advocated by Avraham et al. [6] as CMC

Expectation. The ER reflects the mean rank of the true matches and is a useful statistic for our

purposes; in contrast to the standard metrics, lower ER scores are more desirable and indicate

that on average the correct matches are distributed more toward the lower ranks. (So perfect ER

is 1 and random ER would be half the gallery size). In particular ER has the advantage of a

highly relevant practical interpretation: it is the average number of returned images the operator

will have to scan before reaching the true match.

We compare the following re-identification methods: (1) SDALF [47] using code provided by

the authors (note that SDALF is already shown to decisively outperform [68]); (2) ELF: Prosser

et al.’s [147] spatial variant of Ensemble of Localised Features (ELF) [67] using Strips of ELF; (3)

Attributes: Raw attribute based re-identification (Euclidean distance); (4) OAR: our Optimised

Attribute based Re-identification method with weighting between low-level features and within

attributes learned by directly minimising the Expected Rank (Section 3.2.6 on page 89).

3.3.2 Attribute Analysis

We first analyse the intrinsic discriminative potential of our attribute ontology independently of

how reliably detectable the attributes are (assuming perfect detectability). This analysis provides

an upper bound of performance that would be obtainable with sufficiently advanced attribute

detectors. Figure 3.6 on page 95 reports the prevalence of each attribute in the datasets. Many

attributes have prevalence near to 50%, which is reflected in their higher mutual information

with person identity. As we discussed earlier this is a desirable property because it means each

additional attribute known can potentially halve the number of possible matches. Whether this

is realised or not depends on if attributes are correlated/redundant, in which case each additional

redundant attribute provides less marginal benefit. To check this we compute the correlation

coefficient between all attributes, and found that the average inter-attribute correlation was only

0.07. We therefore expect the attribute ontology to be effective.

Figure 3.4 on the facing page shows a histogram summarising how many people are uniquely
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identifiable solely using attributes and how many would be confused to a greater or lesser extent.

The peak around unique/unambiguous shows that a clear majority of people can be uniquely or

otherwise near-uniquely identified by their attribute-profile alone, while the tail shows that there

are a small number of people with very generic profiles. This observation is important; near-

uniqueness means that approaches which rank distances between attribute-profiles are still likely

to feature the correct match high enough in the ranked list to be of use to human operators.

The CMC curve (for gallery size p=632) that would be obtained assuming perfect attribute

classifiers is shown in Figure 3.5 on page 95. This impressive result (nAUC near a perfect score

of 1.0) highlights the potential for attribute-based re-identification. Also shown are the results

with only the top 5 or 10 attributes (sorted by mutual information with identity), and a random

10 attributes. This shows that: (i) as few as 10 attributes are sufficient if they are informative

(i.e. high MI) and perfectly detectable, while 5 is too few; and (ii) attributes with high MI are

significantly more useful than low MI (always present or absent) attributes.
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Figure 3.4: Uniqueness of attribute descriptions in a population, (i) VIPeR and (ii) PRID. The
peak around unique shows that most people are uniquely identifiable by attributes.

3.3.3 Attribute Detection

Given the analysis of the intrinsic effectiveness of the ontology in the previous section, the next

question is whether the selected attributes can indeed be detected or not. Attribute detection

on both VIPeR and PRID achieves reasonable levels on both balanced and unbalanced datasets

as seen in Table 3.2 on the following page. (dash indicates failure to train due to insufficient

data). For all datasets, a minimum of 9 classifiers can be trained on unbalanced PRID, and 16

on unbalanced VIPeR, in both cases some attribute classifiers are unable to train due to extreme
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VIPeR (u) VIPeR (b) PRID (u) PRID (b)

redshirt 79.6 80.9 – 41.3

blueshirt 62.7 68.3 – 59.6

lightshirt 80.6 82.2 81.6 80.6

darkshirt 82.2 84.0 79.0 79.5

greenshirt 57.3 72.1 – –

nocoats 68.5 69.7 – 31.3

notlightdarkjeanscolour 57.6 69.1 – –

darkbottoms 74.4 75.0 72.2 67.3

lightbottoms 75.3 74.7 76.0 74.0

hassatchel – 56.0 51.9 55.0

barelegs 60.4 74.4 – 50.2

shorts 53.1 76.1 – –

jeans 73.6 78.0 57.1 69.4

male 66.7 68.0 52.1 54.0

skirt – 68.8 – 44.6

patterned – 60.8 – –

midhair 55.2 64.6 69.4 70.4

darkhair 60.0 60.0 75.4 75.4

bald – – – 40.2

hashandbagcarrierbag – 54.5 – 59.4

hasbackpack 63.4 68.6 – 48.3

Mean 66.9 70.3 68.3 66.2

Table 3.2: Attribute Classifier training and test accuracies (%) for VIPeR and PRID, for both the
balanced (b) and unbalanced (ub) datasets.
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Figure 3.5: Best-case (assuming perfect attribute detection) re-identification using attributes with
highest n ground-truth Mutual Information scores, (i) VIPeR and (ii) PRID.
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Figure 3.6: Attribute occurrence frequencies and Attribute Mutual Information (MI) scores in
VIPeR (left) and PRID (right).

class imbalances or data sparsity. Average accuracies for these datasets are also reasonable;

66.9% and 68.3% respectively. The benefit of sub-sampling negative data for attribute learning

is highlighted in the improvement in the balanced datasets. Balancing in this case increases

the number of successfully trained classifiers to 20 for balanced VIPeR and 16 on balanced

PRID with mean accuracies rising to 70.3% for VIPeR. Balancing slightly reduces classification

performance on PRID to an average of 66.2%.

3.3.4 Using Attributes to Re-identify

Given the previous analysis of discriminability and detectability of the attributes, we now address

the central question of attributes for re-identification. We first consider the “raw” attribute re-

identification case (i.e. no weighting or fusion; wL = 0,wa = 1 in Equation (3.1 on page 88)). The
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re-identification performance of attributes alone is summarised in Table 3.3 in terms of expected

rank. There are a few interesting points to note: (i) In most cases using L2 NN matching provides

lower ER scores than L1 NN matching. (ii) On VIPeR and PRID, SDALF outperforms the other

low-level features, and outperforms our basic attributes in VIPeR. (iii) Although the attribute-

centric re-identification uses the same low-level input features (ELF), and the same L1/L2 NN

matching strategy, attributes decisively outperform raw ELF. We can verify that this large dif-

ference is due to the semantic attribute space rather than the implicit dimensionality reduction

effect of attributes by performing Principle Components Analysis (PCA) on ELF to reduce its

dimensionality to the same as our attribute space (Na = 21). In this case the re-identification

performance is still significantly worse than the attribute-centric approach (See Table 3.3). The

improvement over raw ELF is thus due to the attribute-centric approach.

VIPeR L1 L2

ELF [147] 84.3 72.1

ELF PCA 85.3 74.5

Raw Attributes 34.4 37.8

SDALF [47] 44.0

Chance Level 158

PRID L1 L2

ELF 28.2 37.0

ELF PCA 32.7 38.1

Raw Attributes 24.1 24.4

SDALF [47] 31.8

Chance Level 50

Table 3.3: Re-identification performance, we report Expected Rank (average rank of the true
match) scores for VIPeR (left, gallery size p = 316) and PRID (right, gallery size p = 100) and
compare different features and distance measures against our balanced attribute-features prior to
fusion and weight selection. Smaller values indicate better re-identification performance.

3.3.5 Re-identification With Optimised Attributes

Given the promising results for vanilla attribute re-identification in the previous section, we fi-

nally investigate whether our complete model (including discriminative optimisation of weights

to improve expected rank) can further improve performance. Figure 3.7 on the facing page and

Table 3.4 on page 98 summarise final re-identification performance. In each case, optimising

the attributes with the distance metric and fusing with low-level SDALF and ELF improves re-

identification uniformly compared to using attributes or low-level features alone. Our approach

improves ER by 38.3% and 35% on VIPeR, and 38.8% and 46.5% on PRID for the balanced and

unbalanced cases vs SDALF and 66.9%, 65.1%, 77.1% and 80% vs ELF features.



3.3. Experiments 97

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Rank

R
ec

o
g

n
it

io
n

 R
at

e

 

 

SDALF (44.65)
ELFS (83.16)
Raw Attr (35.27)
OAR (27.53)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Rank

R
ec

o
g

n
it

io
n

 R
at

e

 

 

SDALF (11.56)
ELFS (30.86)
Raw Attr (22.91)
OAR (7.08)

Figure 3.7: Final attribute re-identification CMC plots for (i) VIPeR and (ii) PRID, Gallery sizes
p = 316, p = 100. Expected Rank is given in parentheses.

Critically for re-identification scenarios, the most important rank 1 accuracies are improved

convincingly. For VIPeR, OAR improves 40% over SDALF in the balanced case, and 33.3%

for unbalanced data. For PRID, OAR improves by 30% and 36.6%. As in the case of ER, rank

is uniformly improved, indicating the increased likelihood that correct matches appear more

frequently at earlier ranks using our approach.
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Figure 3.8: Final attribute feature weights for VIPeR (left) and PRID (right).

The learned weights for fusion between our attributes and low-level features indicate that

SDALF is informative and useful for re-identification on both datasets. In contrast, ELF is sub-

stantially down-weighted to 18% compared to SDALF on PRID and on VIPeR, disabled entirely.

This makes sense because SDALF is at least twice as effective as ELF for VIPeR (Table 3.3 on

the facing page).

The intra-attribute weights (Figure 3.8) are relatively even on PRID but more varied on

VIPeR where the highest weighted attributes (jeans, hasbackpack, nocoats, midhair, shorts) are
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VIPeR ER Rank 1 Rank 5 Rank10 Rank25 nAUC

Farenzena et al. [47] 44.7 15.3 34.5 44.3 61.6 0.86

Prosser et al. [147] 83.2 6.5 16.5 21.0 30.9 0.74

Raw Attributes (b) 35.3 10.0 26.3 39.6 58.4 0.89

OAR (b) 27.5 21.4 41.5 55.2 71.5 0.94

Raw Attributes (u) 40.4 6.5 23.9 34.8 55.9 0.88

OAR (u) 29.0 19.6 39.7 54.1 71.2 0.91

PRID ER Rank 1 Rank 5 Rank10 Rank25 nAUC

Farenzena et al. 11.6 30.0 53.5 70.5 86.0 0.89

Prosser et al. 30.9 5.5 21.0 35.5 52.0 0.70

Raw Attributes (b) 22.9 9.5 27.0 40.5 60.0 0.78

OAR (b) 7.1 39.0 66.0 78.5 93.5 0.93

Raw Attributes (u) 20.8 8.5 28.5 44.0 69.0 0.80

OAR (u) 6.2 41.5 69.0 82.5 95.0 0.95

Table 3.4: Final attribute re-identification performance. We report Expected Rank scores [6]
(lower scores indicate that overall, an operator will find the correct match appears lower down
the ranks), Cumulative Match Characteristic (CMC) and normalised Area-Under-Curve (nAUC)
scores (higher is better, the maximum nAUC score is 1). We further report accuracies for our
approach using unbalanced data for comparison.

weighted at 1.43, 1.20, 1.17, 1.10 and 1.1; while the least informative attributes are barelegs,

lightshirt, greenshirt, patterned and hassatchel which are weighted to 0.7, 0.7, 0.66, 0.65 and

0.75. Jeans is one of the attributes that is detected most accurately and is most common in the

datasets, so its weight is expected to be high. However the others are more surprising, with some

of the most accurate attributes such as darkshirt and lightshirt weighted relatively low (0.85 and

0.7). For PRID, darkshirt, skirt, lightbottoms, lightshirt and darkbottoms are most informative

(1.19, 1.04, 1.02 and 1.03); darkhair, midhair, bald, jeans are the least (0.78, 0.8, 0.92, 0.86).

Interestingly, the most familiar indicators which might be expected to differentiate good ver-

sus bad attributes are not reflected in the final weighting. Classification accuracy, annotation

error (label noise) and mutual information are not significantly correlated with the final weight-

ing, meaning that some unreliably detectable and rare/low MI attributes actually turn out to be

useful for re-identification with low expected rank; and vice-versa. Moreover, some of the



3.3. Experiments 99

VIPeR Rank 1 Rank 10 Rank 20 Rank 50 nAUC

OAR 21.4 55.2 71.5 82.9 0.92

Hirzer et al.[76] 22.0 63.0 78.0 93.0 -

Farenzena et al.[47] 9.7 31.7 46.5 66.6 0.82

Hirzer et al.[77] 27.0 69.0 83.0 95.0 -

Avraham et al.[6] 15.9 59.7 78.3 - -

Zheng et al.[188, 192] 15.7 53.9 70.1 - -

Prosser et al.[147] 14.6 50.9 66.8 - -

Table 3.5: Comparison of results between our OAR method (Optimised Attribute Re-
identification) and other state of art results for the VIPeR dataset.

weightings vary dramatically between dataset, for example, the attribute jeans is the strongest

weighted attribute on VIPeR, however it is one of the lowest on PRID despite being reasonably

accurate and prevalent on both datasets. These two observations both show (i) the necessity of

jointly learning a combined weighting for all the attributes, (ii) doing so with a relevant objective

function (such as ER), and (iii) learning a model which is adapted for the statistics of each given

dataset/scenario.

In Table 3.5, we compare our approach with the performance other methods as reported in

their evaluations. In this case the cross-validation folds are not the same, so the results are not

exactly comparable, however they should be indicative. Our approach performs comparably to

[76] and convincingly compared to [47, 188, 192] and [147]. Both [77] and [6] exploit pairwise

learning; in [6] a binary classifier is trained on correct and incorrect pairs of detections in order

to learn the projection from one camera to another, in [77] incorrect (i.e., matches that are nearer

to the probe than the true match) detections are directly mapped further away whilst similar but

correct matches are mapped closer together. Our approach is eventually outperformed by [77],

however [77] learns a full covariance distance matrix in contrast to our simple diagonal matrix,

and despite this we remain reasonably competitive.

3.3.6 Zero-shot Identification

In Section 3.3.2 on page 92 we showed that with perfect attribute detections, highly accurate

re-identification is possible. Even with a mere 10 attributes, near-perfect re-identification can
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be performed. Zero-shot identification is the task of generating an attribute-profile either man-

ually or from a different modality of data, then matching individuals in the gallery set via their

attributes. This is highly topical for surveillance: consider the case where a suspect is escaping

through a public area surveilled by CCTV. The authorities in this situation may have enough in-

formation build a semantic-attribute-profile of the suspect using attributes taken from eyewitness

descriptions.

In zero-shot identification (a special case of re-identification) we replace the probe image

with a manually specified attribute description. To test this problem setting, we match the ground

truth attribute-profiles of probe persons against their inferred attribute-profiles in the gallery as

in [174].

An interesting question one might ask is whether this is expected to be better or worse than

conventional attribute-space re-identification based on attributes detected from a probe image.

One might expect zero-shot performance to be better because we know that in the absence of

noise, attribute re-identification performs admirably (Section 3.3.2 on page 92 and Figure 3.5

on page 95) – and there are two sources of noise (attribute detection inaccuracies in the probe

and target images) of which the former noise source has been removed in the zero-shot case. In

this case, a man-in-the-loop approach to querying might be desirable, even if a probe image is

available. That is, the operator could quickly indicate the ground-truth attributes for the probe

image and search based on this (noise-free) ground-truth.

Table 3.6 on the facing page shows re-identification performance for both datasets. Sur-

prisingly, while the performance is encouraging, it is not as compelling as when the profile is

constructed by our classifiers, despite the elimination of the noise on the probe images.

This significant difference between the zero-shot case we outline here and the conventional

case we discuss in the previous section turns out to be because of noise correlation. Intuitively,

consider that if someone with a hard-to-classify hairstyle is classified in one camera with some

error (p(ahair|x)− atruehair), then this person might also be classified in another camera with an

error in the same direction. In this case, using the ground-truth attribute in one camera will

actually be detrimental to re-identification performance.

To verify this explanation, we perform Pearson’s product-moment correlation analysis [143]

on the error (difference between ground-truth labels and the predicted attributes) between the

probe and gallery sets. The average cross-camera error correlation coefficient is 0.93 in VIPeR
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and 0.97 in PRID, and all of the correlation coefficients were statistically significant (p < 0.05).

Although these results show that man-in-the-loop zero-shot identification - if intended to

replace a probe image - may not always be beneficial, it is still evident that zero-shot performs

reasonably in general and is a valuable capability for the case where descriptions are verbal rather

than extracted from a visual example.

ExpRank Rank 1 Rank 5 Rank10 Rank25

VIPER (u) 50.1 6.0 17.1 26.0 48.1

VIPER (b) 54.8 5.4 14.9 25.3 44.9

PRID (u) 19.2 8.0 29.0 47.0 73.0

PRID (b) 26.1 3.0 16.0 32.0 62.0

Table 3.6: Zero-shot re-identification results for VIPeR and PRID.

3.4 Discussion

In this chapter, we have shown how mid-level attributes trained using semantic cues from human

experts [132] can be an effective representation for re-identification and (zero-shot) identification.

Moreover, this provides a different modality to standard low-level features and thus synergistic

opportunities for fusion.

Existing approaches to re-identification [47, 147, 67] focus on high-dimensional low-level

features which aim to be discriminative for identity yet invariant to view and lighting. However,

these variance and invariance properties are hard to obtain simultaneously, thus limiting such

features effectiveness for re-identification. In contrast, attributes provide a low-dimensional mid-

level representation which are discriminative by construction (see Section 3.2.1 on page 81) and

make no strong view invariance assumptions (variability in appearance of each attribute is learned

by the classifier with sufficient training data).

Importantly, although individual attributes vary in robustness and informativeness, attributes

provide a strong cue for identity. Their low-dimensional nature means they are also amenable

to discriminatively learning a good distance metric, in contrast to the challenging optimisation

required for high-dimensional LLFs [188, 192]. In developing a separate cue-modality, our ap-

proach is potentially complementary to the majority of existing approaches, whether focused

on low-level features [47], or learning methods [188, 192]. Although the representation we in-
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Figure 3.9: Success cases for Zero-shot re-identification on VIPeR. The left column shows two
probe images; i) is the image annotated by a human operator and ii) is the correct rank #1 match
as selected by our zero-shot re-identification system. The human-annotated probe descriptions
(middle) and the matched attribute-feature gallery descriptions (right) are notably similar for each
person; the attribute detections from the gallery closely resemble the human-annotated attributes
(particularly those above red line).
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troduce in this chapter has excellent potential, it requires significant human effort to label the

data required to train each attribute classifier and for each new camera. In the next chapter, we

examine how to generate a similar representation in a more scalable manner.
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Chapter 4

Hunting Attributes in the Wild

In this chapter, we show how to automatically discover attributes that provide a valuable repre-

sentation which significantly improves re-identification performance on a variety of challenging

datasets. Existing attribute representations do not generalise across camera deployments. Thus,

this standard strategy currently requires the prohibitive effort of annotating a vector of person

attributes for each individual in a large training set – for each given deployment/dataset. In this

chapter we take a different approach and automatically discover a semantic attribute ontology,

and learn an effective associated representation by crawling large volumes of Internet data. In

addition to eliminating the necessity for per-dataset annotation, by training on a much larger and

more diverse array of examples this representation is more view-invariant and generalisable than

attributes trained at conventional small scales.

4.1 Problem Definition

Feature-centric approaches to improving re-identification [47] typically suffer from the prob-

lem of it being extremely challenging to create features that are more than just weakly able to

distinguish people reliably, whilst simultaneously still being invariant to all the practical visual

covariates such as motion blur, clutter, view angle and pose change, lighting and occlusion. In

contrast, learning re-identification models that discriminatively maximise re-identification per-

formance, for example metric learning [77] and support vector machines (SVM) [147, 6] typi-

cally require copious human annotation and high quantities of data. These lines of inquiry are

nevertheless synergistic because better feature representations tend to improve a given discrim-
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inative algorithm applied downstream, while applying better discriminative methods to a given

representation also tends to improve results.

The recent line of work [103, 117, 153, 174] in feature/representation learning draws in-

spiration from the practices of human experts. Human operators focus their attention on not-

ing and matching distinct semantic characteristics, or attributes, to simplify their task. These

may correspond to distinct soft-biometric, appearance or functional properties such as gender or

clothing-style. Attribute-centric approaches learn a low-dimensional feature representation that

corresponds to such semantic properties. They typically approach this by asking expert opera-

tors to define an ontology of such characteristics, collecting and annotating site specific training

data with a vector of attributes per person, or training computer vision models to detect attributes.

Then, the estimated attributes of each person can be taken as a representation for re-identification.

However, this top-down human-defined attribute approach has some critical limitations: (i) It re-

quires costly attribute annotation of scene-specific training data. This is significantly more costly

than person-identity information used to train discriminative matching models. (ii) Top-down

definition of attributes does not guarantee that they are visually computable by computer vision

techniques given visual surveillance data. (iii) Due to the limited scalability of the annotation ap-

proach, the annotated data are likely to be too small scale to learn accurate and robust detectors

for each attribute of interest.

Thus far, the reader can be forgiven for thinking our motivation for this chapter is more or less

identical to the motivation for Chapter 3. However, we note in Chapter 3 that attributes trained

discriminatively from real-world surveillance data depend on (i) data volume, (ii) classifier ac-

curacy, (iii) class imbalance, and (iv) the availability and quality of human-expert defined labels

– on the target data. This chapter will specifically consider (i) and (iv), which present significant

challenges for representation learning due to the cost involved in acquiring fresh labels and data

from human experts or real-world scenes.

4.1.1 Hunting Attributes for Re-identification

In the following sections we address these issues by taking a very different data-driven [30, 126]

approach to learning attributes for re-identification rather than learning them directly as in Chap-

ter 3. We show how to (i) leverage Web data in order to discover and learn semantically mean-

ingful attributes that are effective for re-identification and (ii) use this discovered attribute repre-

sentation in conjunction with discriminatively trained matching techniques to obtain state of art
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performance on a wide variety of re-identification datasets. We automatically construct a bottom-

up attribute ontology, and learn an effective associated representation by large-scale mining of

noisy but abundant content from social photo-sharing sites. Specifically, rather than asking an

expert to define an ontology as in [103, 117, 153, 174] and the preceding Chapter 3, we discover

an ontology automatically by clustering photograph meta-tags and social commentary. These

clusters are used to train a large bank of detectors, resulting in a number of visually detectable

attributes. Explicitly, this is in contrast to expert defined ontologies, which while intuitive to ex-

perts, may correspond to properties not possible to detect reliably with current vision techniques.

This process is significantly more scalable than manually annotating data per surveillance site

for attribute learning. Moreover, the greater volume and diversity of data used to train these au-

tomatically discovered attributes results in a more reliable and generalisable attribute representa-

tion than conventional attribute representation approaches on surveillance datasets can normally

achieve. We validate our contribution by using our representation to evaluate our results on a set

of four of the most challenging re-identification datasets.

Inspired by the success of attribute representations in other computer vision tasks, a recent

line of work [103, 117, 153, 174, 106] has studied applying attributes to learn an informative

representation for re-identification. The strategy has typically been to annotate binary or categor-

ical clothing, object and soft-biometric properties on the training portion of a dataset, and then

train models (such as topic models [117], SVM [103], or latent-SVMs [106]) to predict these

mid-level properties based on some base low-level feature. Interestingly – assuming attributes

are reliably detectable – only about twenty binary attributes are necessary to achieve unprece-

dented near perfect matching accuracy on challenging benchmarks [104]. The main bottleneck

is actually one or both of robustness and accuracy with regard to attribute detection. This is hard

to achieve because surveillance video is often of poor quality. However more fundamentally, it

is challenging because obtaining sufficient annotated data to train reliable attribute detectors for

each camera is prohibitively costly or impossible. In this chapter, we thus take a different ap-

proach to the attribute strategy, by mining attributes and attribute training data from social photo

sharing sites. Automatically generating attribute detectors that both do not require manual anno-

tation and are trained from sufficiently large scale data could be more scalable and generalisable.

However, the challenge then becomes how to learn meaningful bottom-up attributes from large

scale Internet data, given that such mining delivers highly noisy images and annotations.
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4.2 Attribute Discovery

As ever growing amounts of visual data are being shared on the public Web, the computer vision

community has begun to exploit this resource for obtaining large scale datasets and text or visual

data mining [42]. Meanwhile, the availability of cheap crowd-sourced annotation has begun to

make annotation of large-scale datasets more feasible [42]. However, crowd-sourced annotation

at scale still incurs expenses in terms of time and human effort, and the results are often prone

to bias and noise [163]. An alternative is to develop algorithms to mine data on the Internet

[18, 106] with little or no human intervention. This may take the form of obtaining (noisily

labelled) training data by image search using keyword query [30], or mining socially shared

photos and associated tags/annotations [42].

With regards to attributes specifically, Chen et al.’s “Never-ending Image Learner”, NEIL,

[30] performed semi-supervised learning of attribute detectors based on large scale Internet image

sets, starting with a small seed amount of annotated data. Meanwhile in the context of retail

photos, [18] has clustered product photo annotations to automatically discover an ontology of

putative attributes, for which detectors are then trained.

We employ a similar strategy to Berg et al. in [18], but we must discover attributes from

deeply noisy and unconstrained data; rather than metadata and images from a noisy, but otherwise

hand-curated website.

4.3 Discovering and Learning Attributes for Re-identification

In this section we outline how we first acquire a space of attributes from uncurated Internet

data (Figures 4.2 on page 112 and 4.3 on page 113, Sections 4.3.1, 4.3.2), then how to train

detectors for each attribute (Section 4.3.3) and fuse them with compatible representations for

re-identification (Section 4.3.4). We include a schematic overview of our entire pipeline in Fig-

ure 4.1 on the facing page.

In order to alleviate the burden of annotating vast amounts of attribute training data, we first

aim to acquire a large volume of uncurated and weakly labelled data from the Internet. Clearly,

the kinds of photographs we might find online without a directed search stand a low probability

of being immediately suitable for our purposes - Berg et al. [18], neatly summarise our problem

as “identifying wheat from amidst a great deal of chaff”.

Therefore we define a “broad” search query that is likely to return photographs that contain
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INTERNET IMAGE 
SEARCH 

METADATA IMAGES 

CLUSTERING HUMAN DETECTION 

CLASSIFIER TRAINING 

INTERNET ATTRIBUTE CLASSIFIERS 

INTERNET ATTRIBUTE CLASSIFIERS 

RE-IDENTIFICATION 

SUPERVISED 

UNSUPERVISED 

Post Processing 

SURVEILLANCE DATA 

EXPERT 
ATTRIBUTE 
ONTOLOGY 

Mapping 

Figure 4.1: Schematic overview of our pipeline; Post-Processing modules such as distance-metric
learning or domain-adaptation can be applied depending on the level of supervision available in
order to boost “rank 1” or overall system performance as needed

.

depictions of people in everyday attire. We construct a boolean search query comprising of fre-

quent synonyms of the word “person”, such as “man”, “woman”, “pedestrian”, etc, and combine

this with multiple negative terms such as “car”, “tree”, “cat”, and download 220,000 images

with their associated metadata. This approach differs from most work on conventional recog-

nition [171] where images are categorically and strongly annotated - or derived from a heavily

curated source such as an eCommerce website selling a catalogued array of products. In our

case, there is no guarantee that a photograph and associated metadata will have any meaningful

semantic link, let alone whether or not the metadata refers to what we’re really interested in: tags

and keywords that describe the appearance of the people, if any, in the photograph.

The metadata for each photograph comprises of a variety of noisy but potentially useful in-

formation; location information is not used in our work, but present in approximately 8% of

the photographs at least country-level, which could potentially be used to learn region-specific

attributes in later work. For our purposes, we merge the photograph title and meta-tags, and em-

ploy common pre-processing measures to standardise the meta-text string somewhat; we tokenise

and remove stop-words, remove numerical characters, and stem words to conflate semantically

identical words to their common root. We do not apply a spelling-check so as to preserve any

popular Internet vernacular, names or other bespoke allegorical terms that may be relevant or

insightful at a semantic level in themselves, but may not have entered official spelling dictio-

naries. For example, a user’s specific choice of tag for a city from all available toponyms may
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reveal some information about the rationale behind the annotation; tagged images may also be

somehow visually distinct as a result. Each photograph’s meta-text is represented as a bag-of-

words (BOW) histogram of bigrams with term frequency-inverse document frequency weighting

(tf-idf) which ensures that salient words are more prominently represented.

Lastly, we constrain the constituent tokens of each bigram to being at least 3 characters long.

4.3.1 Discriminative text features from meta-text

As a first step to discovering latent attributes from the Internet data, we construct a BOW metatext

representation with a vocabulary of≈ 5,000 unique bigrams (see Figures 4.2 on page 112 and 4.3

on page 113 for examples).

We construct an initial document-term matrix D, size m≈ 69,000×n≈ 5,000, where the ith

row is an n-length vector di whose jth entry denotes how frequently a gram gram j ∈ G appears

in metatext “document” metai ∈M obtained from each person detection pi ∈ P. Each row di of D

therefore represents a bag of words referring to a person detection and corresponding metatext;

the jth element, representing individual gram counts for grams such as “blue” or “blue shirt”.

This representational model is basic in that it assumes uniformity of importance across all

terms and “documents” that introduces additional noise. In order to better emphasise grams

that are potentially more meaningful than others, we apply the term frequency-inverse document

frequency statistic (tf-idf) to D. We calculate the statistic for all entries in D as in the classic

tf-idf formula in Eqs. (4.1, 4.2, and 4.3):

tf(gram j,di) = 0.5+
0.5× freq(gram j,di)

max{freq(w,di) : w ∈ D}
(4.1)

where w represents the maximum raw frequency of all terms in D.

idf(gram j,M) = log
N

1+ |{d ∈ D : gram ∈ m}|
(4.2)

The inverse document frequency function idf(t,M) is given in Equation (4.2), where N is the

total number of person detections. The tf-idf is then finally constructed as:

D̂(t,m,M) = tf(t,m)× idf(t,M) (4.3)

S(i, j) = |D̂(:, i)− D̂(:, j)|2 (4.4)
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Where the operator : denotes columnwise selection in Equation (4.4 on the preceding page).

We calculate the L2 similarity matrix S as in Equation (4.4 on the facing page), between the

frequency of the unigrams and bigrams, rather than using the Levenshtein distance on the second

gram within each gram – this is unlike Marchesotti et al.’s approach in [126]. Next, we apply

self-tuning Spectral Clustering [185, 130] to matrix S and select Na = 200 clusters. Our intuition

is that in our case it is the co-occurrence of the grams that is semantically relevant, not the

similarity to other grams as represented by Levenshtein distance.

4.3.2 Person Detection

Many retrieved images are unsuitable for learning attribute-models suitable for surveillance be-

cause they contain landscape or objects instead of persons; or because persons are present but

too close-up. To filter the data to obtain suitable images, we select Dollar et al.’s person detector

[43]1 and employ both pre-trained models supplied by the authors to extract bounding boxes of

people from this extremely varied collection of photos. This person detector is a vital component

in dealing with the vast amount of noise inherent in the Internet-sourced images, since it affords

us the ability to (i) determine if people are in an image with a measure of confidence, and (ii) be

selective about how confident the detections we use for classifier training – in order to trade off

data volume and label noise. After conservatively thresholding the person detection confidence,

we are left with 69,000 person crops with corresponding meta-text features.

4.3.3 Classifier Training

Due to memory limitations related to kernel size, using traditional Support Vector Machines

strategies for training large quantities of attribute detectors [104] was not tractable and there-

fore we select Linear Discriminant Analysis (LDA). Despite being a mature approach LDA still

out-performs some contemporary machine learning methods, particularly for cases where there

are many classes and comparatively few positive examples per-class. This, combined with be-

ing computationally less expensive and less sensitive to class imbalance, make it useful for our

purposes. Using all 69,000 crops, we train an independent LDA model for each of the Na = 200

discovered attributes. Finally we build a representation for any person’s image X in an Internet-

attribute semantic-space by stacking the positive-class posteriors from each detector into a Na

1http://vision.ucsd.edu/ pdollar/toolbox/doc/index.html
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Figure 4.2: Uncurated images from our Internet search. Many images are unsuitable for surveil-
lance attribute learning as they contain no people or are too close-up. For this work, we specif-
ically filter out such images by discarding those photographs in which no full-body people can
be detected reliably. As a qualitative illustration, even discounting people under occlusion in the
above collage, there are potentially 25 candidates we might expect a person detector to locate in
the 25 photographs pictured (yellow bounding boxes).
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dimensional vector of Internet Attributes: IA(X).

We train on Internet-sourced data, which one expects to have somewhat different statistics

to typical surveillance crops. For example, surveillance crops typically come from lower qual-

ity cameras with more motion blur and compression artefacts. This may negatively affect the

ability of our Internet data trained representation to effectively encode surveillance detections in

practice. We therefore investigate applying unsupervised domain-adaptation to better align the

Internet training data and surveillance test data. In particular, we align the projected subspaces of

the two datasets, using Gong et al.’s geodesic flow kernel domain adaptation (DA) method [64].

4.3.4 Re-identification, Calibration and Fusion

The attributes obtained thus far are trained directly from discovered text clusters. There is vari-

ability in their reliability of detection based on image data, or their usefulness for re-identification.

We therefore address learning a linear weighting w to rescale the attributes IA such that they are

weighted according to their maximum utility for re-identification. Standard choices of optimisa-

tion criteria for re-identification include the first rank (R1) percentage, which reflects how often

the first result in a ranked list is a perfect match to the probe, or expected rank (ER) or nor-

malised area under curve (nAUC) of the cumulative match characteristic curve (CMC). We wish

to enforce both a strong early-rank score, and good overall performance. To achieve this, we

maximise the product of the CMC curve values p̂(k) at each rank k

P̂w(k) =CMCw(k) =
1
n

n

∑
p=1

1(kp ≤ k) (4.5)

where kp is the distribution of the ranks based on NN re-identification using L1 distances D(IAp, IAg)

between each attribute encoded probe IAp ∈P and all gallery members, IAg ∈ G,g = 1, ...,n. We

denote an indicator function 1 that returns 1 or 0 following the evaluation of the parameters.

Specifically we next use greedy search to select the weight w that maximises the following met-

ric when used to scale each dimension/attribute a:

max
w

n

∏
k=1

P̂w(k) (4.6)

Fusion with Low-Level Features Finally, we integrate our representation with metrics based on

other low-level features. Specifically, we fuse BR-SVM [6] (trained on ELF features), SDALF

[47] and our weighted Internet attributes after further discriminative training using KISS [94].
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The resulting pseudo-metric’s fusion weightings βdataset can be trivially selected with standard

optimisation methods:

D(Xp,Xg) = dKISS(IA(Xp), IA(Xg)) (4.7)

+βSDALF ·dSDALF(Xp,Xg) (4.8)

+βBRELF ·dBRELF(Xp,Xg). (4.9)

For re-identification, we perform standard NN re-identification based on the fused metric in Eq

(4.7), which we denote FUSIA, for FUSed Internet Attributes.

4.4 Experiments

We validate our contributions on four challenging public datasets, quantifying re-identification

performance in the standard way [68] with CMC curve visualisations (CMCs), and expected-

rank scores (ERs). CMC curves indicate the likelihood of a probe’s true match appearing by the

kth rank, whilst ER represents the average rank of the true match to each probe – corresponding

to the relevant metric of how far a human operator would have to search down a ranked list

of matches before verifying the true target. High CMC values and ERs indicate better overall

system performance.

4.4.1 Datasets

We tested the model using four publicly available re-id datasets: VIPeR [157], PRID [75], the

QMUL underGround Re-IDentification dataset (GRID) [120] and CUHK [109], which provide

316, 200, 250, and 971 matched pairs respectively. These datasets cover a diverse variety of

image sizes (in the region of [128x48] to [128x64].), typical view angles and camera conditions.

For supervised learning experiments, we take a standard 2-fold partition approach to training and

testing.

4.4.2 Person Detection, Representation and Domain Adaptation

We discard detections with confidence c < 0.5, in order to minimise false positives which de-

grade classifier performance. Cropped person detections are normalised to 128x48 pixels prior

to feature extraction. For our visual features we employ the commonly used ensemble of local

features[68] (ELF), which encodes both color and texture in 6 horizontal strips [147] for final

features with 2784 dimensions, and reduce dimensionality to 100 with PCA; for feature fusion,
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we also use symmetry-driven accumulation of local features (SDALF) as detailed in [47]. Note

that SDALF provides a distance matrix directly, rather than a feature. For Domain Adaptation

we have only one parameter to select, and use 10 dimensions as recommended by [64].

4.4.3 Visual Detectability of Internet Attributes

We first evaluate the visual detectability of the discovered Internet attributes. We train the binary

attribute classifiers using semantic meta-text cluster assignments as labels, and randomly divide

each cluster into training and validation partitions, containing 75% and 25% of the available

data respectively. Across all folds and 200 attributes, average detection accuracy across the

test-folds is 70.28%, which is significant considering that text-based attribute discovery is not

guaranteed to produce attributes with visual correlates, and class imbalance between positive and

negative classes may negatively impact discriminative learning models. Notably these numbers

for detection reliability are comparable to 66-70% obtained using an expert-designed ontology

purpose designed to be visually detectable and learned with extensively manual annotation of

attribute training data [104].

4.4.4 Attributes as a Representation for Re-Identification

Figure 4.4 on page 119 summarises the re-identification performance of our complete algorithm,

FUSIA, on all four datasets along with a variety of state of the art alternatives. The top plot

shows CMC curves with our final model FUSIA - or Fused Internet Attributes, along with KISS

[94], Binary-Relation SVM [6], SDALF [47] and saliency (eSDC) [186].

In the lower table we report scores obtained using our implementations of the cited methods

in the first four rows. The remaining rows report results obtained from the cited works and

blank results reflect where alternatives have not published results on a given dataset or format.

In all cases we summarise with Rank 1 (perfect match rate), and expected rank. Our Rank 1

is comparable to state of the art alternatives, although not always best – however, our overall

performance as evidenced by the CMC curves and their expected rank scores, outperform most

alternatives by an often significant margin. This margin demonstrates the discriminative strength

of our semantic attribute representation. Meanwhile the consistency of this margin across this

wide batch of state of the art datasets demonstrates that the quantity and variety of source data is

indeed leveraged to learn a highly generalisable representation.

Table 4.1 on the next page breaks down our method according to the different components and
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contributions. Plain Internet attributes (“raw” IA) fail to outperform the ELF (upon which IAs are

constructed). However, the full calibrated (weighted) and domain-adapted variant (IA), boosts

overall re-identification performance dramatically to near state of art levels on VIPeR, GRID and

CUHK, and maintaining comparable performance with other representations on PRID. Finally,

applying metric learning to our attributes (IA-trained KISS) provides further improvement. The

first three columns in Table 4.1 show the component metrics that are fused together to obtain the

final result of FUSIA (final column).

Component Scores Comparison Scores Final Result

Dataset ELF [68] IA (raw) IA KISS[94] (IA) BRSVM[6] (ELF) SDALF [47] FUSIA

VIPeR 91.03 71.23 44.66 21.25 21.45 44.02 12.94

GRID 33.12 26.05 23.05 17.33 21.15 17.86 10.22

PRID 31.99 19.38 17.63 21.91 76.20 20.79 19.89

CUHK 161.39 138.41 128.13 72.25 43.28 72.96 38.09

Table 4.1: Breaking down re-identification performance by components of our full FUSIA model.
See text of Section 4.4.3 for details. We report Expected Rank, lower scores are better.

4.4.5 Encoding Expert Attributes with Internet Attributes

A major advantage of our approach is that effectively, unlimited numbers of person images can

be obtained. Thus, we would expect performance to improve with further application of compu-

tation time to crawling and learning more and better attributes. Nevertheless a disadvantage with

our approach is that our attributes (Figures 4.2 on page 112 and 4.3 on page 113) are somewhat

less easily interpreted by humans. Presented, for example, with the attribute “red shirt”, the av-

erage human would be able to completely understand the concept regardless of the context being

one of surveillance or shopping.

These conventional ontologies [104], by defining attributes such as “blue shirt” and “red

shirt”, map more clearly onto descriptive person search tasks whereas conversely, with our rep-

resentation, attributes such as “Paris people” or “New York people” require more cognitive over-

head to conceptualise and apply to the same task. To provide some insight into the mechanism

of our contribution in this chapter, we illustrate the relation between these two interpretations of

attributes: we use our framework to encode the VIPeR dataset in 200 dimensional IA representa-

tion, and then use existing VIPeR attribute annotation [104] to train a linear SVM mapping from

a conventional attribute ontology to our representation. This corresponds to defining conven-
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tional expert-defined attributes in terms of a linear combination of Internet attributes. Using “red

shirt” and “blue shirt” as query terms, we demonstrate the top retrievals in our 69,000 person

dataset in Figure 4.5 on page 120.

The results are compelling evidence that the approach we define in this chapter is able to en-

code information like “red shirt” or “blue shirt” within a somewhat higher-level attribute such as

“Paris people”. This has implications for applications beyond re-identification in surveillance: by

connecting existing expert-defined attribute ontologies from surveillance to Internet data sources,

we gain the ability to query Internet images for attributes without additional annotation of Inter-

net data or training new classifiers for the Internet domain.

4.5 Discussion

We have shown in this chapter how effective mid-level semantic attributes can be discovered and

trained from Internet data in an automated sense. These attributes are semantic by construction

due to creation via mining of textual tags and comments, although they vary by how visually

obvious they are in a human sense, they can be detected visually with comparable reliability to

those attributes designed by human experts thanks to the practically unlimited quantity of Internet

image data available for training. We demonstrate that this Internet attribute representation of

person images is generalisable and discriminative for re-identification, a property that is unlocked

through domain adaptation and metric learning, and furthermore is synergistic and amenable to

fusion with conventional techniques.

However, a representation is only part of a full re-identification system and to realise full

performance, a discriminatively trained matching model is required that requires pairwise anno-

tation. In the following chapter we investigate one option for reducing the annotation cost for

this step.
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SDALF

ELF

BR−SVM

KISS

FUSIA

VIPeR GRID PRID CUHK

Method R1 ↑ ER ↓ R1 ↑ ER ↓ R1 ↑ ER ↓ R1 ↑ ER ↓

ELF [68] 0.08 84.27 0.13 26.42 0.11 18.26 0.04 160.55

BR-SVM [6] (ELF) 0.08 21.45 0.08 21.15 0.03 24.80 0.08 43.28

KISS [94] (IA) 0.12 21.51 0.20 14.73 0.09 19.27 0.02 73.16

FUSIA 0.17 13.39 0.22 9.55 0.04 19.90 0.09 38.59

SDALF [47] 0.16 44.02 0.16 17.86 0.03 20.79 0.12 72.96

eSDC [186] 0.24

Liu et al. [112] 0.16

RANKSVM [147] 0.15 0.10

Hirzer et al. [76] 0.21 0.15

Figure 4.4: Overall re-identification performance of our FUSIA representation versus alterna-
tives, reported as CMC curves (top) and a table of Rank 1 and expected rank (ER) summaries
(bottom).
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Chapter 5

Transferring Knowledge for Re-identification

In this chapter, we suggest that Internet Attributes from Chapter 4 are just one potential approach

to the scalability problem; and whilst the intermediary representation afforded by our method in

that chapter were proven to be a form of higher-level encoding of more interpretable attributes.

We now move toward relaxing this strong assumption by investigating flexible multi-source trans-

fer of re-identification models across camera pairs. Specifically, we show how to leverage prior

re-identification models learned for a set of source view pairs (domains), and flexibly combine

these to obtain good re-identification performance in a target view pair (domain) with greatly

reduced training data requirements in the target domain.

Good progress can be made toward improving re-identification performance by using dis-

criminative learning methods to directly learn a new representation as we demonstrated in Chap-

ter 3. However, whilst this approach is promising it requires human curation in the form of

expertly-defined labels for training, and also assumes that sufficiently diverse quantities of train-

ing data exist. In Chapter 4, we mitigate the data volume concern by introducing a way of mining

semantically meaningful attributes from limitless supplies of Internet-sourced training images, as

well as discover their compatibility and correlation with ontologies of expert-defined attributes

such as those in Chapter 3.

Various recent approaches have made some progress in re-identification performance us-

ing discriminative learning techniques for both representation learning as detailed Chapter 3.

However, these approaches are fundamentally limited by the requirement of extensive annotated

training data for every pair of views. For practical re-identification, this is an unreasonable as-
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sumption, as annotating extensive volumes of data for every pair of cameras to be re-identified

may be impossible or prohibitively expensive.

5.1 Problem Definition

A central limitation of existing discriminative learning approaches, is that they are most suited

to closed-world benchmark problems than realistic open-world scenarios. In particular they re-

quire many pairs of person images annotated by same/different, for each camera pair between

which the system is required to operate. This is reasonable for training/testing splits on bench-

mark datasets that are already exhaustively annotated by person identity. However it is highly

impractical for real-world use, where there may be very many pairs of cameras in a given net-

work, each requiring exhaustive annotation – making this “calibration” requirement of such a

system impossible or prohibitively expensive. Ideally, we would like to deploy a re-identification

system between a pair of cameras with minimal calibration/training annotation. What a system

learns from annotations of one camera pair should be exploited by another pair without requiring

exhaustive annotation in the new pair.

This is an issue in transfer learning [140, 45, 83]. Transfer learning has been used to good ef-

fect in numerous classical computer vision problems, for example object categorisation [83, 151].

The motivation is typically to scale systems to many classes [83] or domains [151, 45] without

requiring prohibitive amounts of training data. While transfer learning is already an important

issue in classical vision tasks, it will turn out to be even more central to the re-identification

problem. This is because since pairs define domains in this context, it is unreasonable to collect

exhaustive training data for a quadratic number of domains.

Transfer learning is already important for many classical vision problems with multiple

classes or domains. However it is critically important for re-identification because the number of

domains (camera pairs) is quadratic in the number of cameras. Therefore obtaining exhaustive

training data for each domain is even more impractical than for conventional vision applications,

and transfer learning becomes critical. Nevertheless, no prior re-identification studies have ad-

dressed this issue, relying solely on benchmark datasets with sufficient annotated data in each

camera-pair of interest.

In this chapter we relax the practically unrealistic assumption of exhaustive training data

within each domain by generalising recent ideas in learning re-identification [6] and SVM trans-



5.2. Transfer Learning for Re-identification 123

fer learning [83]. Specifically, we consider re-identification based on binary-relation learning

[6, 96], and show how to generalise this approach to achieve effective cross-domain learning by

combining non-linear decision boundaries from source domains to create a more accurate target

domain re-identification classifier. In this way we are able to improve on within-domain learning

both for sparse and even non-sparse training data volumes. Moreover we show how to achieve

this while systematically avoiding negative transfer, even when there are multiple and irrelevant

source domains.

5.2 Transfer Learning for Re-identification

Learning approaches to re-identification typically learn distance metrics [77, 192, 94], or model-

based matching procedures such as boosting [68] and ranking [147] based on annotated training

pairs. These have recently improved state of the art re-identification performance significantly

[77, 6]. Another line of research learns mid-level attributes [101] to replace or augment low

level features. In this case inter-camera invariance is obtained via the generalisation performance

of learned attribute classifiers. However, this only applies within domains where annotated at-

tribute data are available. The recently proposed binary relation learning approach [6, 96] ob-

tains state of the art re-identification results by exploiting strong SVM classifiers trained to make

same/different judgements on pairs of images. This strategy does not assume that instances of

the same person are more similar than instances of different people, and instead implicitly learns

the mapping between appearance in pairs of training cameras.

A serious issue with all these approaches is that they do not generalise well across domains

(different re-identification view pairs; see Section 5.3.5); and hence require extensive volumes

of training data for each pair of cameras between which re-identified is to be performed. This is

possible for benchmark scenarios, but unreasonable in practice.

5.2.1 On Cameras and Domains

In this work we consider a camera pair to make up a domain, and this should not be confused with

some other studies which consider a particular camera to be a domain [151]. For classification

[151] and detection [45], an individual camera encompasses the notion of a domain because a

camera’s parameters impart a systematic impact on the observations, which the model must learn

to interpret. However in re-identification, a model’s task is to infer something about pairs of
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Figure 5.1: Examples from all of the datasets we use in our experiments, from the top: VIPeR,
PRID, GRID, and CUHK. Note the dramatic appearance variations in both the people and back-
grounds; as well as how image quality varies.
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observations, and the systematic impact of the environment is therefore defined by the pair of

cameras.

5.2.2 Transfer Learning

Only very recently has transfer learning for re-identification begun to be considered [109, 191].

However these studies consider only improving within-domain (camera pair) re-identification

by transferring knowledge learned from one group of people to help identify another group of

people. This is intrinsically a much more restricted scenario than the more general and useful

case of transferring across domains to permit re-identification in a new camera pair with sparse

annotations.

A central issue in transfer learning [140] is that of from where to transfer. When there is

only one source of information available, and that source is known to be highly relevant to the

task of interest, then transfer learning is much simpler than in the more general and realistic case

where there are multiple sources of information of greatly varying relevance. In this latter case, it

is non-trivial to design models which avoid negative transfer [140]. Our problem of transferring

mappings across camera pairs falls squarely into the latter more difficult case. Since the relevance

of one camera pair to another depends on similarity in their viewing angles and lighting, many

pairs will not be similar and working out from where to transfer is of critical importance.

5.2.3 Negative Instance Selection

In our framework and many other methods [147, 188] which are trained on pairwise data, there

is the issue of which examples to choose among the quadratic number of negative instances.

The work of [6] presented an analysis showing diminishing returns but increasing computational

cost beyond 10 negative per positive instances. However, choosing instances randomly means

that most negative pairs will be far from the decision boundary and convey no extra information

(see Figure 5.2 on page 127). This means that: (i) computation is wasted, (ii) performance is

suboptimal because many informative negative pairs will be missed, and (iii) this is not scalable

in terms of human annotation.

5.2.4 The Approach

We address all the mentioned issues by generalising the state of the art binary relation approach

to re-identification [6], but tackle the new challenges in addressing the training data requirements
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via multi-source transfer. There are many potential approaches to transfer learning [140], but in

this study we will develop a SVM multi-kernel learning (MKL) [46, 83] transfer strategy. This

will allow us to integrate multiple source domains of unknown relevance, while avoiding negative

transfer via an inter-kernel sparsity regulariser

We make the following specific contributions: (i) Framing the problem of generalising re-

identification as a domain-transfer problem; (ii) Developing a specific framework for domain-

transfer re-identification for multiple domains of varying relevance by way of expressing the task

as a SVM multi-kernel learning problem; (iii) Revealing the limitations of existing approaches

to re-identification by way of a systematic and quantitative cross-domain evaluation; and (iv) Ex-

tensive evaluation of our proposed method on four of the largest public re-identification datasets

available.

5.2.5 Concept Illustration

To provide intuition before introducing the details of the proposed method, Figure 5.2 on the next

page provides an schematic illustration of our re-identification transfer learning framework. In

this illustration, the feature space within each camera is one dimensional. A domain, consisting

of pairs of observations made by two cameras, can thus be represented as a point on a two

dimensional plane. Pairs of cross-view images corresponding to the same person are shown

with circles, and pairs corresponding to different people with crosses. Binary-relation [6] based

re-identification is the strategy of learning a decision boundary in this space (Figure 5.2 on the

facing page, blue lines). In an easy re-identification scenario, the feature-space is the same in

each view, so distinguishing true pairs from false pairs requires only a simple decision boundary

(Figure 5.2 on the next page(a)). In a realistic scenario, there will be a non-trivial and unknown

transformation [146] in feature space from one camera view relative to another (Figure 5.2 on

the facing page(b) and (c)). In this case a strong non-linear classifier could learn the decision

boundary separating true from false pairs, and hence an implicit inter-camera mapping.

In this illustration, we assume there are three source domains (camera pairs; Figure 5.2 on

the next page(a)-(c)) for which annotated data (red and green symbols) is plentiful, and good

binary relation based re-identification models have been learned (blue lines). Now suppose we

wish to deploy our re-identification system to a new location where we can only annotate a very

limited amount of training data. With limited data, a re-identification classifier learned in the

conventional way – solely from local data – will be much less accurate, clearly misclassifying
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many regions of the input space (Figure 5.2(e), unlabeled grey symbols on the wrong side of

the decision boundary). In contrast, a re-identification classifier taking advantage of our domain

transfer framework will realise that the limited data is best explainable by the model learned

from the second source domain (Figure 5.2(b)), and borrow that classifier’s strength to help

learn a much more informative and accurate boundary than is possible using local data alone

(Figure 5.2(d) vs (e)). (The intuition for how this works is finding a source domain classifier or

combination thereof which fit the few available data points in the target domain). Finally, note

that simple averaging of all the source classifiers is insufficient: in this example the mean of

source classifiers (a)-(c) is very similar to classifier (a) which will be wrong for the target domain

(d). We shall validate these intuitive observations experimentally in our experiments (Section

5.3.4).
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Figure 5.2: An illustration of how domain transfer can assist re-identification. We simplistically
represent domains as a pair of one-dimensional axes, where each axis C represents a differ-
ent camera. Symbols (O, X) indicate same/different pairs, grey symbols are un-annotated data
points and blue lines indicate decision boundaries. Here, auxiliary domains (a-c) each provide
useful information (arrow weighting) to the target domain classifier (d), in conjunction with some
annotation for calibration. Our method avoids the failure case (e) where an erroneous decision
boundary is formed.
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5.2.6 Within Domain Re-identification

Training

We first consider the case of learning to re-identify people within one particular domain corre-

sponding to a camera pair a and b. Here we largely follow a binary-relation learning approach

[6, 96], but review the method for completeness. We assume training data {xa
i ,z

a
i }

Na
i=1 describing

NA people observed in camera a, and {xa
j ,z

b
j}

Nb
j=1 describing NB people appearing in camera B,

where x represents a feature vector, and z indicates the identity of each person. From this data

we can generate:

• A set of cross-camera positive pairs of the same person:

{yk = 1,xk = [xa
i ||xb

j ]k}, ∀(zi = z j),

• A set of cross-camera negative pairs of different people:

{yk =−1,xk = [xa
i ||xb

j ]k}, ∀(zi 6= z j),

where [·||·] denotes concatenation and k = 1 . . .N indexes observation pairs xk. Note that there

are a quadratic number of negative pairings, and actually constructing all pairs is typically pro-

hibitive, so using a random subset of negative examples is typically adopted [6, 147].

Specifically, to sample negative instances we take each positive instance i∈ A from camera A

in turn and at random uniformly sample, (without replacement), 10 negative instances j ∈ B from

camera B with the constraint j 6= i. To learn a re-identification model, we train a classifier on pair

data {yk,xk}N
k=1 to distinguish matching pairs from non-matching pairs. This can be formalised

as a support vector machine learning problem as:

min
w,ξ
‖w‖2 +

C
N

N

∑
k=1

ξk,

s.t. ykwT
φ(xk)≥ 1−ξk, ∀k, (5.1)

where C parametrises margin penalty, φ(·) is a non-linear mapping, and we maximise the margin

subject to the soft constraint (non-negative slack variable ξk) that true pairs should be positive

and false pairs should be negative.

Discussion

Note that this objective (Equation 5.1) pursues positive true pairs and negative false pairs, with-

out any assumption of their visual similarity/dissimilarity. With the RBF kernel, binary-relation

SVM implicitly learns an arbitrarily complex transformation mapping between cameras, e.g.,
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uncovering their lighting [146] or view transformation, as well as relative relevance for each fea-

ture within that domain. In contrast, the common RankSVM [147] approach has two limitations:

(i) it only models a first-order weighting of features, without considering their covariance, and

(ii) it operates under the explicit assumption that true pairs should be more similar than false

pairs (i.e., Figure 5.2 on page 127(a)). In practice this means that for camera pairs which de-

viate sharply from a simple linear transformation model (e.g., Figure 5.2 on page 127(a)) to a

more complex transformation (e.g., Figure 5.2 on page 127(b) or (c)), binary relation SVM out-

performs RankSVM, as shown in [6]. Mahalanobis metric learning objectives [77, 94, 192] are

more powerful than RankSVM in modelling feature covariance, however they also still assume

that true pairs are more similar than false pairs.

On Transferred Re-identification

For online re-identification of persons across cameras, putative pairs of images are concatenated

x∗ = [xa
∗,xb
∗] and the score of a test pair x∗ is is evaluated as f (x∗) = wT φ(x∗). The pair can

be classified as same or different via sign f (x∗), or the continuous score itself can be used to

relatively rank putative matches. Given this re-identification framework, we next address how to

transfer learned models across domains.

5.2.7 Domain Transfer Re-identification (DTR)

Training

Assume a set of source domains s = 1 . . .S are given, for which we have learned re-identification

models as per Section 5.2.6. To leverage the learned experience of these domains in a new target

domain t, we take the strategy of multi-kernel learning [8]. Each source domain s can be seen as

providing a score fs(x) indicating its confidence that a given pair x is a matching pair under the

model of that domain. We therefore formalise a domain transfer prediction task, which classifies

a pair x in the target domain, taking into account both target and source domain knowledge, as:

ft(x) = wT
φ(x),

= wT
t φt(x)+

S

∑
s=1

wT
s φs( fs(x)), (5.2)

where parameters w = [wt , ws] to be determined weight the relative informativeness of the target

domain and each source domain knowledge.
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Given this task formulation, the within-domain learning objective in Eq (5.1 on page 128)

can be generalised to the case of domain-transfer learning to estimate w as:

min
w

Ω(w)+
C
N

N

∑
k=1

L(w,xk,yk) (5.3)

where L denotes the hinge loss

L(w,x,y) =
∣∣1− ywT

φ(x)
∣∣
+

(5.4)

and Ω(w) denotes the weight regulariser. Note that [83] use a linear kernel φ for computational

tractability. In our case, because the problem is binary unlike in [83], we are able to use the RBF

kernel instead without great computational penalty. This is indeed necessary because we need to

learn a complex transformation.

Evaluating Domain Relevance

An important issue for domain transfer in the general unconstrained case is that we do not know

in advance which source domain is going to be relevant, and indeed the majority are likely to

be irrelevant. For this reason we seek a sparse solution for the optimisation problem in Eq

(5.3). Previously L1 norm regularisers have been proposed to provide sparsity across kernels.

However this is hard to optimise effectively [8]. The Lp (1 < p≤ 2) norm regulariser has recently

been shown to effectively induce sparsity while providing significantly easier optimisation [137].

We therefore take the (2, p) group-norm as the regulariser: providing L2 regularisation within

domains, while encouraging Lp sparsity across the set of S+ 1 kernels which reflect the cues

from the target domain and the S source domains:

Ω(w) =
1
2
‖w‖2

2,p ,

=
1
2
‖[‖wt‖2 ,‖w1‖2 , . . . ,‖wS‖2]‖

2
p . (5.5)

Explicitly, the (2, p) group-norm applies an L2 norm within kernels (sources), but L1 across

sources. In other words, the sparsity inducing L1 regulariser will try to reduce an entire source

to zero if possible, but the L2 regulariser will not do the same to individual weights within a

source. This is good for discounting irrelevance at the level of sources rather than individual

features, avoiding negative transfer because any source kernels which mismatch the available

target domain data will be allocated zero coefficients. Expressed in this form, we can exploit

existing efficient stochastic gradient-descent algorithms [46] for solving the cross-domain re-

identification learning problem in Eq (5.3).
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Figure 5.3: Schematic overview of our framework for transferring knowledge from previously
trained camera pairs onto a new camera pair.

5.3 Experiments

5.3.1 Feature Extraction

The main imagery feature that we will use with our DTR model is the 150 dimensional HSV

colour descriptor as detailed in [6]. Additionally we compared the commonly used ensemble

of local features (ELF) which encodes both colour and texture in 2784 dimensions as detailed

in [68, 147]; as well as symmetry driven accumulation of local features (SDALF) as detailed in

[47]. Note that SDALF provides a distance matrix directly, rather than a feature encoding.

5.3.2 Experimental Settings

We tested the model using the four largest publicly available re-identification datasets: VIPER

[68], PRID [75], GRID [120] and CUHK [109], which provide 316, 200, 250, and 971 matched

pairs respectively. These datasets cover a diverse variety of image sizes (in the region of [128x48]

to [128x64].), typical view angles and camera conditions (Figure 5.1 on page 124). We evalu-

ated cross-domain re-identification performance on these datasets in four “leave one dataset out”

folds. In each case we considered three datasets as source domains and the fourth dataset as the

target domain. For the source domains we learned within-domain re-identification models with
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all available data for each (Section 5.2.6). For the held out domain, we performed 2-fold cross-

validation, training the domain transfer model on half (or less) of the data (Section 5.2.7), and

using the held out half for testing. For testing, we consider the matched pairs between cameras

within the domain, taking each person in turn (probe) and matching them against the people in the

other camera (gallery). Within the source domains, SVM slack parameter C was cross-validated

to optimise expected rank. In the target domain we set C = 10 throughout. We fixed the RBF

kernel parameter γ to the median of each distance matrix. For the SVM methods we select 10

negative examples per positive pair.

5.3.3 Evaluation

As baselines we consider where relevant three non-learning methods and three learning methods.

For non-learning methods we consider: (i) HSV features [6], (ii) ELF [68] and (iii) SDALF [47];

in each case with nearest neighbour (NN) matching and Euclidean distance where relevant. For

learning methods, we consider:

ATTR: Re-identification using Euclidean NN matching on learned mid-level attributes [101]

from ELF [68] features.

BR-SVM: Binary-relation based re-identification using SVMs [6, 96]. Note that BR-SVM has

already been shown to decisively outperform the commonly applied RankSVM [147, 191]

and prior metric learning methods [192].

DTR: Our proposed new Domain-Transfer re-identification model, using multi-kernel learning.

We evaluate re-identification performance using two metrics: For visualisation, the nor-

malised Cumulative Matching Characteristic (nCMC) curve, which indicates the probability of

the correct match to a probe image appearing in the top n results from the gallery for varying n1.

For quantitative summarisation, we use the expected rank (ER) metric [68, 6], which is the mean

rank of the true result2. This metric has the advantage that it reflects a physically meaningful

quantity, which is how many items an operator has to scan in a ranked list before reaching the

true match for the probe, and hence the average time it takes a human operator to find the true

match using such a system [68].

1Here, higher curves are better; enclosing an area of 1 is perfect; and an area of 0.5 is random
2Lower is better; a mean rank of 1 is perfect; and a mean rank of half the gallery size is random
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5.3.4 Domain Transfer Experiments

Domain transfer compensation for a lack of target domain data

We first evaluate re-identification performance as a function of target domain training data vol-

ume. Figure 5.4 on the next page summarises the expected rank (ER) of each model for loga-

rithmically varying volumes of training data. Also shown (flat lines) are the performance of LLF

models SDALF (red), HSV (blue) and ELF (black). Clearly performance for the learning mod-

els degrades with sparser training data (Figure 5.4 on the following page, ER of learned models

higher to the right). However, our proposed DTR model (magenta) systematically outperforms

the within-domain BR-SVM model [6] (green), especially with increasingly sparse data. We ob-

tain between a margin of improvement over BR-SVM of 5-20%, 6-16% and 6-17% for VIPER,

GRID and CUHK respectively. Meanwhile we obtain a margin of improvement over SDALF of

up to 70%, 5%, 25% and 31% for VIPER, GRID and CUHK. At some point, for all learning

models, the data will be sufficiently sparse that LLF approaches will be best. However DTR’s

margin over BR-SVM, means that standard LLFs can be outperformed with less training data

than before. DTR model outperforms the best LLF with down to 1/16th data for VIPER, 1/4 data

for GRID and 1/8th data for CUHK. Importantly, performance of DTR is usually dramatically

better than simple nearest-neighbour on HSV (blue), which is the feature on which DTR was

trained. Note that our weaker result on the PRID dataset can be understood by the generally poor

performance of the HSV feature used by our DTR in this domain (see Section 5.3.5). This could

in general be ameliorated by including other feature types within our MKL framework.

These results are also visualised in Figure 5.5 on page 135, showing the CMC curve for each

domain and data sparsity condition (line-style), of BR-SVM-based re-identification versus our

domain-transfer model (colour). The magenta CMC curves representing the transfer condition

enclose the green non-transfer curves in each case. Finally, for GRID and CUHK we observe

that even with the maximum volume of training data, transfer learning is still able to improve

performance (Figure 5.5 on page 135, solid magenta CMC curves enclosing solid green CMC

curves; Figure 5.4 on the next page, magenta curves under green curves).

Some visual examples of the improvement provided by our DTR approach over BR-SVM in

each dataset are shown in Figure 5.7 on page 141. In each case, the correct match to the probe is

highlighted in green and the upper rows show the ranked matches by DTR versus ranked matches

by BR-SVM in lower rows. Finally, Table 5.3 on page 139 summarises some accuracies of each
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Figure 5.4: Re-identification performance as a function of volume of training data. Lower ex-
pected rank is better. Each dataset is evaluated as a leave-one-dataset out domain transfer prob-
lem. Our proposed DTR model systematically outperforms BR-SVM within-domain learning.
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Figure 5.5: CMC curves for re-identification with and without transfer. Each line-type illustrates
a different volume of training data. In each case the transfer CMC curve encloses the non-transfer
curve.

method at different ranks under the various conditions. In the majority of cases DTR clearly

outperforms BR-SVM.

Cross-Domain Analysis

To provide some insight into the cross-domain results above, we present some analysis of

the affinity between the major re-identification datasets by way of the learned weights for each

kernel. Figure 5.6 on the following page plots the weights for re-identification for each target

domain (rows) against the data source (columns). As expected, each dataset is highly relevant

to itself (strong diagonal). Cross-dataset transfer is illustrated by the off-diagonal weights. It is

evident that the VIPER re-identifier is relevant to assist both GRID and CUHK, but not PRID. In-

terestingly, there is some degree of transferability between VIPER, GRID and CUHK. However,

the PRID dataset is neither useful as a source for any others, nor making use of any others as a
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source. This reflects the previous (Figure 5.4 on page 134) results showing that the transfer per-

formance for PRID was no better than the local only performance. Nevertheless, it is reassuring

that in this case of an irrelevant source, the sparsity prior of our transfer framework was able to

apply zero weighting (Figure 5.6) and hence avoided automatically negative transfer (Figure 5.4

on page 134).
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Figure 5.6: Cross-dataset affinity for re-identification. Darker blocks indicate a stronger cue.

5.3.5 Additional Analysis

We next provide some additional analysis about the existing models and datasets to provide some

insight into the domain transfer problem, and further validate our contribution as illustrated in

Sections 5.2.5 and 5.3.4.

Generalisation of low-level features

To investigate the generalisation of low-level features, we perform re-identification using non-

learned nearest-neighbour matching on the four datasets. The results are shown in Table 5.1 on

the facing page, expressed as expected rank. The best results are highlighted in bold, and the

worst in red. The important point to note here is that the best and worst results using low-level

features vary significantly on different domains. That is, the rankings obtained by different fea-

ture types are not uniformly good across domains. This highlights in turn that just making a

single selection of “good” feature for re-identification and expecting similar performance on all

domains is not plausible. Therefore, leveraging learning based methods to adapt to the appear-

ance of a given camera view is critical. We note that while SDALF [47] is the most effective

feature overall, it is extremely computationally extensive to extract and thus of limited suitability

for practical real-time applications.
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HSV[6] SDALF[47] ELF[68]

VIPeR 70.24 53.64 67.73

PRID 38.91 34.85 32.50

GRID 20.64 16.70 23.18

CUHK1 101.72 73.70 156.86

Table 5.1: Low-Level Features (LLFs) often do not generalise across domains. Columns are
LLFs used in NN re-identification on four public datasets (rows). We report Expected Rank
(ER), lower scores are better. Bold scores are best; red scores are worst.

BR-SVM[6] VIPeR PRID GRID CUHK

VIPeR 16.17 50.23 39.01 166.11

PRID 155.23 34.35 59.70 240.72

GRID 119.38 49.17 11.60 202.55

CUHK 96.51 48.93 47.39 52.24

ATTR[101] VIPeR PRID GRID CUHK

VIPeR 48.19 43.38 26.22 185.61

PRID 98.82 26.06 39.01 201.50

GRID 94.28 46.69 21.82 194.29

Table 5.2: Learning-based re-identification methods may transfer “blind” and retain some utility
on untrained datasets but performance is penalised. Rows are training sources, columns are
testing targets. Scores are the Expected Rank (ER), lower scores are better.

Generalisation of learning models

We next perform re-identification using two learning methods: BR-SVM [6] and attribute

learning [101], each of which provides at least near state-of-the-art performance when applied

within a single domain. To evaluate cross-domain generalisation, we train the methods on each

domain (VIPER, PRID, GRID, CUHK) and apply them to all domains, thus obtaining 16 condi-

tions3 per method as shown in Table 5.2. The important points to note here are that (i) for both

learning methods, the within-domain performance (diagonal of the table) is significantly better

than the across-domain performance, i.e., the methods do not directly generalise across-domain;

and (ii) the performance of the learning methods when applied across-domains is actually worse

than the low-level feature methods (Table 5.1). This shows that achieving a useful level of per-

formance with learning methods outside of closed-world benchmarks is non-trivial, and hence

highlights the value of our contribution in this chapter.

The above results together show that neither low-level features nor learning methods gener-

alise directly and reliably across-domains, therefore the only viable route to good performance is

3Except for ATTR for CUHK because we had no attribute annotation for this domain.
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to learn a new model for each pair of cameras. However, the quadratic number of pairs means

that in practice exhaustive annotation is unreasonable beyond benchmark dataset testing exer-

cises. This is turn shows the value of our contribution of transferring re-identification models for

reducing training data requirements.

Computational Efficiency

The practically relevant aspect of performance is online matching speed. As a SVM approach,

our model is linear in the number of support vectors at test time. In particular it requires S

times the computation of [6] for S source domains. In practice this means that our multi-kernel

matching took about a millisecond per comparison (79ms including ELF feature extraction) with

our unoptimised Matlab implementation. We note that despite making use of a strong model,

this is still faster than state of the art LLFs such as SDALF [47], which requires approximately

460ms per comparison.

5.4 Discussion

In this chapter we introduced the problem of domain transfer for re-identification. This is a

highly relevant challenge for taking re-identification out of closed-world benchmarks and making

it useful for real-world applications. By formulating domain-transfer re-identification as a SVM

multi-kernel learning problem, we were able to achieve good performance on a wide variety of

public benchmark datasets with a fraction of the training data required by previous methods.

Moreover, our approach is able to evaluate available source domains automatically, weighting

the relevant sources appropriately and ignoring irrelevant sources, thus avoiding negative transfer.

We achieved these results despite the fact that the datasets used were unrelated and independently

collected. With a wider selection of source datasets to choose from, the ability to construct a

mapping to the target domain of interest (Figure 5.2 on page 127) will be increased [83], and our

results are therefore expected to only improve further as additional datasets are released.

There are many remaining opportunities for future work to improve upon the methods ex-

plored in this chapter, primarily we wish to further reduce the amount of training required data

whilst maintaining good performance in the target domain. Additionally, we have only used the

simplest colour feature available in this chapter; absolute performance should improve when us-

ing “better” features as input, and multiple different features can readily be incorporated into our

MKL framework. With regards to negative instance selection, we thus far randomly selected 10
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negative pairs per positive pair for training. Re-identification accuracy can be increased at the

cost of additional computation by increasing this ratio [6]. However, more interesting is investi-

gating active learning or instance mining approaches to optimally select the right instances from

the quadratic number of pairs is therefore an important open question. Finally, we would also

like to transductively exploit the unlabelled data distribution in the target domain, and eventu-

ally move towards completely annotation free transfer learning for re-identification. The work

from Chapters 3, 4, and 5, all share an underlying and important assumption with all other re-

identification work to date; namely that our surveillance cameras are statically fixed in place.

In the final technical chapter, we investigate what setting aside this assumption means for next-

generation, real-world, re-identification systems.
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Figure 5.7: Some examples of early-rank matches from our system. The leftmost image is the
probe image, with gallery images ranked by similarity to the right. The correct match to the
probe is highlighted in green. From top to bottom, we present two examples from VIPeR, PRID,
GRID and CUHK.
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Chapter 6

Exploring the Open World

A fundamental assumption in almost all existing re-identification research is that cameras are

in fixed emplacements, allowing the explicit modelling of camera and inter-camera properties

in order to improve re-identification. In this chapter, we present an introductory study pushing

re-identification in a different direction: re-identification on a mobile platform, such as a Web.

We formalise variants of the standard tasks for re-identification that are more relevant for mobile

re-identification. We introduce the first dataset for mobile re-identification, and we use this to

elucidate the unique challenges of mobile re-identification. Finally, we re-evaluate some conven-

tional wisdom about re-identification models in the light of these challenges and suggest future

avenues for research in this area.

6.1 Problem Definition

Person re-identification has been extensively and aggressively studied in recent years by the

computer vision community due to its challenging nature and critical role in underpinning many

security and business-intelligence tasks in multi-camera surveillance [65]. This has resulted in

continued improvements in performance on increasingly challenging benchmark datasets. In

essence, re-identification is about successfully retrieving people by identity, enabling security

operators or higher-level software components to locate individuals. Nevertheless, it is conven-

tionally formulated as a one-to-one set-matching problem between two fixed cameras, for which

an effective model can be learned. In this chapter we present an introductory study that relaxes

this core assumption and investigates how re-identification generalises to mobile surveillance
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platforms as realised by unmanned aerial vehicles (UAVs) [34].

Despite the successes of static CCTV cameras, we argue that considering alternative surveil-

lance equipment not only opens up exciting new research areas, but also new ways of thinking

about re-identification and particularly, how re-identification fits into real-world applications and

links with other research fields. New technology such as remotely-operated vehicles and wear-

able visual sensing equipment is becoming increasingly accessible in terms of cost and availabil-

ity to the general public. In many cases, quickly deployable mobile visual systems rival currently

predominant static CCTV cameras in terms or resolution and frame-rate. More critically, they

intrinsically have a qualitative flexibility advantage – in terms of being mobile – and are thus

able to dynamically adapt their viewing position and direction without being constrained by the

emplaced locations of a CCTV camera. We term any piece of equipment that can be exploited

for the acquisition of video data for surveillance – and particularly in a portable sense – a mobile

re-identification platform or, MRP.

Generalising re-identification to MRPs provides many new capabilities and research avenues,

as well as introducing some significant differences and new challenges compared to the standard

formulation of the re-identification problem. These broadly relate to the interrelated issues of (1)

view ambiguity, (2) view variability and (3) open-world re-id.

6.1.1 Within-view Ambiguity

The first major contrast between MRP and standard fixed camera re-identification relates to the

number of views. That is, the standard setting is typically defined across a pair of camera views,

and within-camera tracking is typically assumed to fully disambiguate detections within-view.

In contrast for MRPs ‘within camera’ re-identification is itself non-trivial because the camera’s

positional and orientational mobility means that even stationary people frequently enter and exit

the view area due solely to self-motion of the platform. This further generalises the so called ‘M

vs All’ scenario described in [87] to ‘All vs All’.

6.1.2 View Variability and Generality

The second major contrast is the continually varying view-stream of a MRP compared to the

conventional fixed position CCTV camera. This is significant because most of the recent perfor-

mance gains in the state of the art re-identification methods have come from supervised learning

of view or view-pair specific models [66]. In the MRP case the continually varying view param-
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Figure 6.1: Comparison of typical surveillance scenes from (left column) standard surveillance
data from a static CCTV camera and (right column) from a mobile re-identification platform
(MRP). Examined side-by-side, it is clear that the CCTV camera footage is more suitable for
discriminative machine learning as the variability of the human detection appearances are at least
somewhat constrained for emplaced cameras; this assumption is dramatically violated in the case
of MRPs since MRPs are much less constrained, therefore relative viewpoint variance is more
pronounced.
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eters – including range, lighting, self induced motion blur and detection alignment – precludes

learning such models (see Figure 6.2 on the facing page).

The conventional approach to maximising re-identification performance is learning a discrim-

inative model to maximise re-identification rate for a specific pair of fixed camera views [94, 6].

A few studies have started to consider how re-identification models generalise across views [103]

and generally found that achieving good re-identification rate requires view specific discrimina-

tive training. Specifically, that camera view covariates must be learned individually and that each

camera view requires individual training in order to train a good model. This reflects analogous

conclusions drawn more broadly in computer vision recognition [170]. As a result, studies have

begun to develop transfer strategies that allow models learned from ‘source’ view pair(s) to be

adapted to better apply in a new ‘target’ view [25, 103, 121] which may have different position,

lighting, etc. These studies have generally considered combining [25] or adapting [103, 121]

source model(s) to construct the model for a new domain – with the general aim of reducing or

eliminating the need for collecting annotated training data for every pair of cameras.

The important contrast with our MRP context is that domains, or camera pairs, as described

above are discrete. In contrast, the video feed from a MRP is a continuously varying domain.

This means that for previous approaches to view generalisation it is still assumed that enough

data to model a specific view or view pair can be collected and a discriminative model learned.

This is no longer feasible for MRP, since the constantly varying view means that collecting (let

alone annotating) extensive view-specific data is impossible, and the conventional strategy of

learning a discriminative model is called into question.

6.1.3 Open-world

Most existing re-identification studies make the simplifying assumption of closed-world condi-

tions. That is, there is a one-to-one set match, where everyone in the first camera re-appears

in the second camera. No one disappears, and no extra people appear. Although convenient for

modelling and benchmarking purposes, this is clearly an extremely strong assumption in practice.

In the case of MRP with within-camera re-identification ambiguity, and the mobile nature of the

platform, closed-world is clearly an inappropriate assumption – meaning that re-identification

with MRP is significantly more ambiguous than the conventional setting.

At its most general, open world re-identification [65, 27] addresses relaxing several assump-

tions: one-to-one set-match (that is, that every person in the probe set appears in the gallery set
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Figure 6.2: Illustrating key differences in person detection quality when automatically detected
from mobile re-identification platform video (MRP, left), compared to detections in a standard
re-identification dataset, VIPeR (right). Notably, the VIPeR images (i) are in perfect register,
(ii) feature standard walking poses from a limited number of relative angles. Contrastingly, the
MRP images are unregistered, feature more varied pose and also occasionally heavy motion-blur
because of the relative motion of the MRP to the target person during transit.

and vice-versa) [84]; the assumption of matching between only two cameras [84]; the assump-

tion of a known number of people; or that multi-shot grouping is known a-priori [87]. A few

studies have begun to work toward this including [84, 87]. However, these have generally con-

sidered only a couple of these relaxations at once. In contrast, the MRP re-identification scenario

is intrinsically open-world: self movement in a potentially open-space means one-to-one match

situations are unlikely, self-motion means that tracking cannot provide multi-shot grouping, and

clearly the person count of an arbitrarily surveilled space is not known in advance.

Despite the challenges identified above, MRPs provide a compelling new ground to break

for re-identification science both in terms of broadening the application area as well as provid-

ing the opportunity to reconsider several implicit but strong assumptions made in most existing

re-identification research. In this work, we make four main contributions: (i) We present a case

for the pursuit and development of a new research area using mobile re-identification platforms

(MRPs); (ii) We formalise three novel MRP-related variants on the classic re-identification sce-

nario; as well as associated evaluation metrics for each; (iii) We collect the first public dataset for

MRP re-identification and establish benchmarks for each of the identified tasks; (iv) We elucidate

the unique challenges posed by MRP re-identification and discuss their implications for general

re-identification research going forward.

Going beyond conventional re-identification, we next discuss a few recently identified re-

search areas that are relevant to our MRP context.

6.1.4 UAVs

A full discussion of background research in UAV technology is out of the scope of this chapter,

but see [34] for an introduction and background to UAVs and their capabilities. The central
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issue for UAVs to become more useful for surveillance tasks is for them to become increasingly

autonomous, and a significant component of this is learning to maintain consistent person identity

estimates over time, which we address here.

6.2 Re-identification Problem Variants and Metrics

Conventional re-identification is used as a forensic search tool, or as a module by higher-level

software – such as inter-camera tracking [149]. For ease of model formulation (e.g., metric

learning, SVM ranking), evaluation and establishing benchmarks, most studies formalise re-

identification as a closed-world set match between two specific cameras. As a result the typical

evaluation metric is Rank 1 accuracy (the % of perfect gallery matches for each probe image), or

the CMC curve (the % of correct matches within the top N ranked matches, for varying N) [178].

In this section we describe three distinct variants of the re-identification problem that naturally

arise with MRPs – each based on intuitive application scenarios for a MRP. Table 6.1 on page 151

summarises the problem variants proposed and compares them with classical approaches to re-id.

6.2.1 Watchlist Verification

In the watchlist task, the MRP is patrolling an area and the goal is to detect if any person en-

countered is somebody on a pre-defined watch-list. For the moment we make no assumption

on whether the MRP is manually controlled, has a pre-programmed travel path or autonomously

wanders. However, we assume that the scenario is passive sensing – the MRP is not going to

to take action based on any detected matches. The watchlist itself could come from a variety of

sources: a pre-defined mug-shot gallery; a transmitted detection from another MRP or CCTV

camera; or a previous detection saved by the current MRP on a previous flight or earlier in this

patrol. For example the MRP may be trying to track down a specific person previously identified

performing a suspicious action of interest.

In this case, the ‘probe’ is a single person from the watch list, and the ‘gallery’ is all people

observed in a patrol (see Figure 6.4 on page 150). In contrast to conventional re-identification

(see Figure 6.3 on the next page), this is a more open world problem in that: (i) the probe person

may not appear anywhere in the patrol video (no match is an option), (ii) (most) people in the

patrol video are not on the watchlist (many background distractors), and (iii) the total number of

detected instances of the true match if present in the gallery/patrol video is unknown (not one-to-
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one). In Table 6.1 on page 151 this is illustrated under match by [N] and [M] reflecting multiple

potential ungrouped matches and distractors respectively.

Given these considerations, the right evaluation metrics for this problem are information-

retrieval style metrics, thus we use a suite of them: (i) the rank of the true matches, and (ii)

precision-recall curves and associated summary – average-precision.

Camera A Camera A 

(Probe) Detection 

Possible route Possible route 

Possible route 

Camera B 

Camera B 

(Gallery) Detection 

Figure 6.3: Illustrative example of a real-world re-identification set-up using static cameras,
the type of scenario which most re-identification work assumes. A person travels across an
urban public space (yellow path), and may take multiple potential routes whilst passing between
CCTV blind spots (orange paths) where they cannot be detected and their location is therefore
unknown. Contrast this scenario with that in Figure 6.4 on the following page where a mobile
re-identification platform may maintain surveillance on the target throughout the entire path, as
well as potentially follow the target if they deviate from an expected route.

6.2.2 Within-Flight Re-identification

In the within-flight re-identification task, the MRP’s goal is to maintain consistent identity of per-

son detections recorded throughout the flight. Due to both platform and target motion, a particular

target may enter the view once, or enter and exit the view multiple times throughout the flight. In

this case there is only one “camera view” as compared to conventional re-identification setting

of two fixed cameras. However, it means that: (i) the platform motion can create potentially

more view-variation over time than occurs between two fixed CCTV cameras, so “within-view”

re-identification can become even harder than conventional re-id; (ii) as before, there is a general
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Drone 

Waypoint #1 

(Probe) Detection 

Waypoint #3 

(Gallery) Detection 

Waypoint #2 

(Gallery) Detection 

Figure 6.4: Illustrative example of a real-world re-identification set-up using a mobile re-
identification platform (MRP), or UAV. Contrasting with the same scenario using static CCTV
(Figure 6.3 on the preceding page), the UAV is able to follow (red path) the path of the person
(yellow path). This enables surveillance in areas with no existing CCTV coverage, but at the cost
of person detections that are more diversified in terms of their appearance and their appearance
under the effect of practical covariates such as viewing angle and lighting conditions.

open-world identity inference problem.

The general identity inference problem here means that there is no-longer a notion of probe

and gallery. Instead there is a list of N detections, to which we wish to assign one of K ≤ N

unique identities for later tasks to use. However K (the number of unique people in the scene) is

itself unknown. In Table 6.1 on the next page this is illustrated under match by [N] – the single

set of detections with unknown grouping – and an unknown person count.

Evaluating this open world identity assignment is non-trivial compared to closed world. To

fully evaluate the performance, we use statistical analysis on all pairs of detections to measure

pairwise Precision and Recall. Specifically given all true Lgt and estimated Lest labels of the N

detections. A ‘true’ pair i, j has the same label, and a ‘false’ pair have different labels. Thus true-

positive, true-negative, false positive and false-negative rates can be computed as in Equation (6.2

on the facing page); which can in turn be summarised in terms of Precision, Recall, Specificity,

and Accuracy as in Equation (6.1 on the next page).
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Setting Cameras Match Person Count View-specific Multi-shot Evaluation

Singleshot [47, 186, 94, 6] 2 N : N Known Yes No Rank 1, CMC

Multishot [47, 91] 2 N : N Known Yes Grouped Rank 1, CMC

Karaman [87] 2 N : [N] Known Yes Group : No group Accuracy

John [84] 2 N +M1 : N +M2 Known Yes No Rank 1

Watchlist 1 1 : [N]+ [M] N/A No No group Rank, Prec+Recall

Within 1 [N] Unknown No No group F-measure

Across 2 [N]+ [M1] : [N]+ [M2] Unknown No No group F-measure

Table 6.1: Contrasting re-identification problem variants. Match: N : N reflects closed world
one-to-one mapping among N people in view 1 : view 2. [N] indicates unknown within-camera
grouping. M represents the unknown fraction of the people to be matched who are distractors in
that they do not occur in the other view or the watchlist.

Prec = T P/(T P+FP)

Rec = T P/(T P+FN)

Spec = T N/(FP+T N)

Acc = (T P+T N)/N (6.1)

T P = ∑
i j
(Lgt(i) = Lgt( j))∧ (Lest(i) = Lest( j))

T N = ∑
i j
(Lgt(i) 6= Lgt( j))∧ (Lest(i) 6= Lest( j))

FP = ∑
i j
(Lgt(i) 6= Lgt( j))∧ (Lest(i) = Lest( j))

FN = ∑
i j
(Lgt(i) = Lgt( j))∧ (Lest(i) 6= Lest( j)) (6.2)

6.2.3 Across-flight Re-identification

The across-flight problem is somewhat more related to the classic problem of between-camera

re-id. In this case identities should be matched across two separate MRP flights. This may be

from either the same platform making two patrols, or two distinct and communicating platforms

trying to coordinate identities. It is a fully open-world problem, given that within-flight/view

tracking cannot be assumed for MRPs (ungrouped detections in Table 6.1), and that only an

unknown subset of the total people in each view may be shared (in Table 6.1, N shared + M

distractor people in each view). However, compared to within-flight re-identification, it may be

somewhat harder because the environments across space and/or time may be even more different

than the view change caused by platform motion in the previous case. Again, statistical analysis

is the appropriate evaluation technique.

6.3 Methodology

6.3.1 UAV Setup

We use a retail remote-operated quadrocopter to realise our MRP for the purposes of data acqui-

sition (see Figure 6.5 on page 153). During data collection, a human operator pilots the UAV via
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laptop using the Robot Operating System (ROS1) to ensure responsive handling with the con-

trol loop; sensor data capture was performed in parallel and at ≈ 200Hz whilst video from the

quadrocopter was sampled at≈ 1−5Hz. For this particular commodity platform, flight time was

limited by UAV platform weight (436g) and battery capacity to ≈ 10 minutes per flight. The

UAV possesses two cameras, of which only the main camera is used. This camera is a diago-

nal lens, CMOS camera providing a 90◦field of view at a theoretical maximum quality rating of

1280x720 (720p) and 30 frames per second (fps). Because of experimental considerations, such

as the computational processing required to generate the real-time person detections, the video

was recorded at 640x360 pixels (i.e. subsampled 50%). Although this particular retail UAV has

a top speed limit of 18km/h, due to safety considerations and the goal of acquiring optimal video

data for person detection and re-identification, the UAV’s maximum lateral velocity was con-

strained to little more than normal human walking speed and the maximum flight “ceiling” set

to an altitude of 15 meters. Finally, in order to compensate for environmental factors affect-

ing human control, the UAV employs an ARM cortex A8 CPU operating at ≈ 1Ghz to provide

stabilisation assistance for the pilot.

During flight, a heads-up-display (HUD) is overlaid on top of the video feed displaying stan-

dard sensor information (such as yaw, pitch, acceleration, battery and altitude), as well as real-

time person detections and person detection confidence scores. This in some sense serves to

provide the operator with the visual cues necessary to weakly simulate an active-sensing, fully

autonomous (i.e. closed-loop) UAV. If the UAV is orientated poorly towards a person or the per-

son is partially occluded then a poor detection will result and the operator can adjust the relative

orientation and position of the UAV based on this visualisation until a strong detection can be

obtained. Some examples of the HUD can be seen in Figure 6.6 on page 154.

6.3.2 Person detection

Given the 1− 5Hz video feed, the next task is to obtain person detections. To maximise the

reliability of this step, we first apply a corrective transform on each frame to correct for the ‘roll’

of the UAV (using data recorded from the MRP’s onboard accelerometer sensor), since the de-

tection models assume people to be upright. In order to detect people fast enough for real-time

visualisation so as to assist the MRP’s operator, we employ [43]’s toolkit which provides excel-

lent computational efficiency and detection quality. At extraction time, we resample detections to

1http://www.ros.org/
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Figure 6.6: Illustrative examples of our mobile re-identification platform’s human interface as
used in the data capture sessions; illustrating real-time person detections colour-coded by de-
tection confidence. The top-left and top-right images illustrate typical operator views from the
outdoor and indoor flights from Dataset 1; The bottom row illustrates Dataset 2. See Figure 6.7
on the facing page for a description of graphical components.

[128x48] pixels2. We threshold detections and discard any with a confidence of below 20% since

the environments from which we will be detecting are extremely varied with respect to lighting

and pose and we wish to limit the number of potential false-positive detections whilst retaining

most true detections. For our visual features we employ the commonly used ensemble of local

features (ELF) [68], which encodes both colour and texture in 6 horizontal strips [147] for final

features of 2784 dimensions.

6.3.3 Datasets

Using the procedure described above, we collected two multi-flight datasets. The first dataset

contains three flights worth of data, across an outdoor and indoor environment. These consisted

of 436, 652, and 848 video frames, from which we obtained 233, 471, and 797 person detections

from 6, 7, and 10 distinct people (after thresholding). All person detections in this dataset are

exhaustively annotated.

The second, significantly larger, dataset contains six flights of data in three different uncon-

strained and heavily crowded outdoor environments. Across each flight there are between 10,000

2However, note that the original resolution and therefore resample quality will vary dramatically over
time within a flight, see Figure 6.1 on page 145
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Video: 640x360 RGB 

Control: Robot Operating System (ROS); 200Hz 

Sensing: 1-5Hz; Video, Flight Telemetry 

Max Flight time: ~10mins 

Compass / Bearing 

Pitch 

Motor Output 

Battery 

Altitude 

Temperature 

Person Count 

Horizon Indicator 

Person Detections 

& Confidences 

Figure 6.7: Anatomy of the heads-up-display (HUD) used by the UAV operator to simulate the
visual cues used in a closed-control-loop mobile re-identification platform (MRP). The HUD
overlays real-time person detections over humans and uses colour coding to indicate detection
confidence as well as reporting qualitative confidence scores and other standard telemetric read-
ings to assist with piloting. The human-detection bounding boxes assist the pilot in manoeuvring
the UAV for optimal human detection (i.e. minimal misalignment of detection bounding boxes
and therefore cropped person images at the downstream re-identification step.).

and 30,000 frames of video data and an average of 8,654 person detections from an unknown

number of distinct people. Of this data, we selected a single flight and exhaustively annotated 28

unique identities within the 4096 detections available within a 2:06 window.

6.3.4 Classifier training, Representation and Datasets

One of the central questions we wanted to answer is to what extent the state of the art discrimina-

tive models for standard benchmark datasets are effective for MRP based re-identification. This

question is crucial because conditions in MRP-sourced video data continuously change during a

flight thus there are many more combinations of pose and viewing angle than in the fixed view

case assumed by most state of the art models – i.e. a fixed view with enough (annotated) data

is sufficient to learn a model. It is therefore critical to discover if and how much performance

discriminative models lose on dynamically changing data.

We investigate this by training a selection of strong discriminative models including one of

the most popular: RankSVM [147]; and two recent state of the art approaches BR-SVM [6] and
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KISS [94]. We train these models on a variety of large benchmark datasets including VIPER

[68] (632 distinct persons in [128x48] crops), PRID [75] (200 distinct persons), GRID [120]

(250 persons) and CUHK [109] (971 persons). We resample all detections to match VIPeR’s

dimensions. For the computationally intensive discriminative methods, we reduce the dimension

with PCA to d = 200 for BR-SVM and d = 34 for KISS as specified in [94].

6.3.5 Domain Shift

Since we assume a stationary view and the absence of live-annotation of video-feed data (as prox-

ies for normal discriminative training on a single-view), the only way to apply trained matching

models for MRPs is to train them on benchmark datasets before testing them on the MRP video

feed. This potentially opens up the issue of domain shift [64, 140, 103] between the training and

testing data. For example, due to additional chance of motion blur, mis-registered images and

more variance in pose from the MRP detections (Figure 1), which are absent in VIPER.

As a preliminarily investigation into how to overcome this issue, we consider unsupervised

domain-adaptation in order to better align the target MRP data Xt and source VIPeR training data

Xs. That is, warp p(Xt) so that it is more aligned with the source training data padapt(Xt)≈ p(Xs),

with the intuition that this should allow classifiers trained on Xs to generalise better to Xt [140].

In particular, we align the projected subspaces of the two datasets, using the geodesic flow kernel

domain adaptation (DA) method [64] using dDA = 13 dimensions.

Intuitively explained, the process of alignment involves treating the subspaces of domains Xt

and Xs as points on a Grassmannian manifold G(d,D). The manifold itself can be interpreted

as a geometric representation of how imbricated the underlying distributions of features are, and

thus the distance between Xt and Xs on this manifold can be viewed as a measure of similarity

between the covariate properties inherent to Xt and Xs. Calculating the geodesic flow permits

the parametrisation of how the source model transitions (t) to the target; t = 0 indicating that

a particular projection φ is unlikely to be near the target domain, and t = 1 indicating high

likelihood of being close to the target domain. With the full set of T subspaces, a kernel may

be computed that describes this transition and through which the optimal alignment projection

may be found by greedily searching the best number of feature dimensions that result in Xt and

Xs being proximal and thus promoting more uniform downstream classification performance.
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6.3.6 Re-identification Baselines

For Task 1: Watchlist, we simulate this experiment by taking each person detection in turn

as the watch-list, and matching it against every other detection from the flight to produce a

ranked list. The ranked list of results is then evaluated for relevance with information retrieval

metrics (Sec 6.2.1). Whether first, average or last rank; or average precision is the most relevant

metric will depend on the end-user application and cost function. We evaluate this task with both

Datasets 1 and 2.

For Task 2: Intra-flight re-identification and Task 3: Inter-flight re-identification (see

Sec 6.2.2-6.2.3), the experiment is performed by matching every detection against every other

detection. The resulting detection-affinity matrix is thresholded3 and analysed for connected

components [167]. Each connected component defines an estimated person. The estimated Lset

and true Lgt identities are compared using statistical analysis as explained in Section 6.2. We

evaluate these tasks with Dataset 1. As algorithms to produce the matching scores for each

experiment, we compare the following models:

NN-[DA] Nearest-neighbor (NN) matching based on the detection descriptor.

BR-SVM-[DA] Binary-relation SVM with RBF concatenation kernel [6].

RankSVM-[DA] SVM with difference feature and linear kernel [147].

KISS-[DA] State of the art discriminative Mahalanobis metric learning [94].

In each case we compare the model with and without domain adaptation (-DA suffix). As

explained earlier, we do not have annotated view-specific training data. Thus, we train the latter

three discriminative models on the full VIPER dataset of 632 pairs and test them on the MRP

video detections. These models obtain good results when applied within-domain on VIPER

[6, 147, 94], however our experiment will test their ability to generalise this knowledge to a

continuously varying view.

6.4 Experiments

6.4.1 Watchlist and Re-identification Evaluations

We first present the results for the three main tasks before drawing conclusions from them.

3The threshold is chosen to optimise F-measure for each model.
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The results of watchlist verification are presented in Table 6.2 on the next page (top) for

Dataset 1, and Table 6.2 on the facing page (bottom) for Dataset 2. This task reflects how highly

true matches to each particular watchlist person are ranked relative to all the other person de-

tections in the dataset, on average. Clearly all methods perform better than random: average

rank, for example, has a chance level of half the number of detections across all flights which

is 500/2 = 250 for Dataset 1 and 4046/2 = 2023 for Dataset 2. The best methods obtain a first

rank result of around 2. Surprisingly, this is the case both in the smaller Dataset 1 and the larger

Dataset 2.

Intra-flight re-identification results for Dataset 1 are presented in Table 6.3 on page 160 (top).

This task attempts un-constrained detection association across all detections within a flight.

Intra-flight re-identification results for Dataset 1 are presented in Table 6.3 on page 160 (bot-

tom). This task attempts un-constrained detection association across all detections from a pair of

flights.

6.4.2 Observations and Analysis

Based on the results described in the previous section and Tables 6.2 on the next page- 6.3 on

page 160, we make the following observations and conclusions.

(1) NN is best overall – Surprisingly, outperforming all discriminative methods including KISS,

BRSVM and RankSVM. In dramatic contrast to the standard ordering of results obtained in

the literature [94, 6, 147], where discriminatively trained models significantly outperform simple

nearest-neighbour; our results show that in the MRP context, the simplest NN method is generally

best. This is true overall for Dataset 1 with all three tasks, as well as the significantly larger

Dataset 2 for the watchlist task. This is due to the intrinsic challenge of MRP re-identification

that there is no possibility to learn view-specific models.

In order to apply discriminative models to our MRP data, we transferred models trained on

VIPER. However, this may not be effective because the MRP video is more variable and un-

constrained. Meanwhile, the strong discriminative models have evidently over fitted to the more

constrained viewing conditions in VIPER. NN, in contrast, is more reliable because it doesn’t
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train a strong discriminative model and thus cannot over fit in this sense.

(2) Simpler models are better overall The overall ordering of the results is NN > KISS >

BRSV M. This generally reflects the model complexity, with NN being the simplest. BRSVM

being the most complex (due to RBF kernels on concatenated data), and KISS being in between.

This ordering also reflects the importance of pairwise training data volume to the model, with

KISS and BRSVM both requiring fairly large volumes of training data from the same view in

order to perform well.

(3) Domain adaptation can help – but it helps NN significantly more than discriminative

models. Comparing the un-augmented condition of each model with the domain adaptation

condition (-DA suffix), we see that domain adaptation doesn’t make much consistent difference

for the watchlist experiment (Table 6.2 on page 159), but it sometimes makes a significant dif-

ference in the re-identification experiment (Table 6.3 on the facing page). However, KISS for

example is improved from mAP of 0.28 to 0.31 with domain adaptation; while NN is improved

much more significantly from mAP of 0.39 to 0.47. That domain-adaptation can help is in one

sense not surprising (the MRP video has different statistics to VIPER and aligning the distribu-

tions should help), but in another sense surprising (the MRP video is only a domain in a very

limited sense – because the view varies so much there is hardly a consistent set of statistics p(Xt)

to adapt toward). Meanwhile, the fact that it helps NN more than KISS is understandable because

KISS still suffers from over fitting to the particular source data (VIPER).

(4) Discriminative models cannot be “fixed” for MRP by adding more conventional training

data. The significance of the previous results – with respect to limitations of the discriminative

models – could be questioned on the grounds of whether VIPER data is representative enough

for the variety of views obtained by the MRP. To test this, we re-trained the KISS model using the

union of the four largest benchmark re-identification datasets to date, including VIPER, CUHK,

GRID and PRID, thus greatly increasing the volume and variety of data used. Table 6.4 on the

next page compares the watchlist verification results when training KISS only on VIPER versus

training on all existing datasets (ED suffix). Clearly using all the extra data makes only a minor

difference to the performance.
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First rank ↓ Last rank ↓ Mean rank ↓ Av Prec ↑

KISS (ED) 1.66 64.44 20.79 0.57

KISS-DA (ED) 3.29 60.68 21.40 0.56

KISS 1.25 81.31 25.90 0.53

KISS-DA 3.50 81.65 30.08 0.35

Table 6.4: Attempting to improve the performance of KISS [94] on the watchlist task by training
on all available data (ED). Results are from a single flight in Dataset 1.

6.4.3 Person Count Evaluation

As a final example application, we perform person counting on the flight videos. This is com-

puted as a by-product of open-world re-identification: each identified connected component of

the detections defines a distinct person. In general NN and NN-DA provide a near best or best

estimate in each case, as seen in Table 6.5.

Actual NN KISS BRSVM NN-DA KISS-DA BRSVM-DA RankSVM

Flight1 6.0 ±16.0 ±23.0 ±79.0 ±7.0 ±20.0 ±37.0 ±102.0

Flight2 7.0 ±0.0 ±0.0 ±5.0 ±1.0 ±3.0 ±2.0 ±2.0

Flight3 10.0 ±40.0 ±13.0 ±1.0 ±6.0 ±92.0 ±3.0 ±27.0

Average 7.7 ±18.7 ±12.0 ±28.3 ±4.0 ±38.3 ±14.0 ±42.3

Actual NN KISS BRSVM NN-DA KISS-DA BRSVM-DA RankSVM

Flight1≶2 7.0 ±5.0 ±0.0 ±38.0 ±0.0 ±0.0 ±74.0 ±48.0

Flight2≶3 10.0 ±0.0 ±13.0 ±21.0 ±6.0 ±5.0 ±0.0 ±1.0

Flight1≶3 10.0 ±0.0 ±6.0 ±0.0 ±3.0 ±7.0 ±84.0 ±226.0

Average 9.0 ±1.7 ±6.3 ±19.7 ±3.0 ±4.0 ±52.7 ±91.7

Table 6.5: Person counts in Dataset 1. For each method we report the result as the average error
between the estimated and true count. (Lower is better) (upper) Intra-flight condition, (lower)
Inter-flight condition We denote comparisons made inter-flight as commutative, with ≶.

6.5 Discussion

Based on the experiments and analysis in the previous section, we drew the following conclu-

sions: 1. NN is the best method for MRP re-identification, 2. In general simpler methods out-
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perform more complex methods, 3. Unsupervised domain adaptation can improve MRP re-id, 4.

The challenge is intrinsic to the nature of benchmark datasets being captured by static cameras,

and the MRP dataset being captured by a dynamic camera.

Given these observations, we highlight the following considerations for future work:

1. Current re-identification research has been too focused on learning dataset specific models,

leading to dataset bias [170]. Analogous to research trends in more general computer

vision [92], developing methods that avoid bias and generalise across datasets is necessary

to fully exploit the potential of re-identification to MRPs.

2. Domain adaptation methods can potentially help adapt re-identification methods across

scenarios with different data statistics. However while most domain adaptation methods

require some supervision in the target domain, it is important that DA methods used in

this context are unsupervised, since live annotation of MRP detections is implausible. In

the current results, a completely disjoint unsupervised DA module [64] is able to make

an impact. Investigating tighter integration of the DA and re-identification mechanism is

likely to be fruitful.

3. Conventional re-identification and DA [64] methods assume the target task is a distinct and

discrete context. The continually varying nature of MRP view, and hence data statistics,

means that it may be important to treat MRP as an online rather than a discrete adaptation

process. This is a somewhat unique aspect of DA for re-identification in contrast to more

general vision problems [170, 92].

4. Consideration of the MRP task highlights the intrinsically open-world nature of re-identification

which has largely been ignored for convenience by prior research. In this study we ad-

dressed this by a very simple strategy of threshold learning. However, more effort should

be put toward developing more systematic and optimal methods to resolve open-world

ambiguity.

5. Our new continuously-varying view dataset has a total of 51,922 unconstrained person

detections across six flights resulting in hundreds of identities that partially overlap across

three outdoor zones. This challenging MRP dataset is qualitatively different to existing

re-identification datasets, and will help drive the research challenges identified above.
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Finally, given the partial success obtained so far, we discuss some speculative applications

for MRP technology.

Our first re-identification case for MRP is an open-loop scenario where the re-identification

task does not directly have any impact on the travel path of the vehicle; but data from the vehicle

still enables analysis and detection albeit in a passive sense. In this mode of operation, the MRP

will likely either be under control of a human operator, or will follow a set of preconfigured

waypoints along a patrol-route, with the video sensor data available for analysis either in near

real-time, or after the MRP has returned home. This is conceptually closest to the standard

re-identification problem.

In contrast, closed-loop MRP control may be fully or semi-automated and critically, may

permit the MRP to automatically adapt a regular patrol-route or journey for optimal performance

on specific re-identification tasks. For example, re-identification quality-control to move the

MRP to get a better view when current re-identification is too ambiguous [152]. For a given flight

time or length, this then leads into an interesting trade-off between re-identification accuracy of

each individual versus coverage: the fraction of total people captured in a zone in total [162].
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Chapter 7

Conclusions

7.1 Goals and Contributions

The primary aims of this thesis has been to explore (i) alternative representations capable of

effectively reducing the effect of variations in human appearance after transition to a disjoint

camera view in order to facilitate inter-camera entity association, re-identification, (ii) present

and explore techniques capable of scaling to real-world use in modern surveillance environments,

(iii) review the underlying assumptions that have driven re-identification work in early years,

against the recent changes in retail surveillance technology available today.

We adopted an attribute-centric approach to (i) in Chapter 3, developing a mid-level, human-

semantic representation that improved re-identification performance, was synergistic with exist-

ing features and showed how it can be fused and a mapping function learnt to account for inter-

attribute variances in utility and error. For (ii), two methods were investigated, (a) In Chapter 4 a

data-driven approach exploiting the copious information available online to discover latent quasi-

semantic attributes from meta-text without the need for manual annotation and (b), in Chapter 5

a transfer-learning framework capable of learning inter-camera appearance mappings from mul-

tiple camera pairs for transfer to a target domain where less annotation were available. Finally, in

(iii) we experiment on a new video surveillance dataset obtained from a retail aerial UAV which

violates the traditional assumption that surveillance cameras are statically emplaced in Chapter

6.

In Chapter 3, the attribute representation provides a separate modality of feature and therefore
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is exploitable for fusion with features from other work such as [47].

The approach of using attributes is advantageous since it produces a lower-dimension fea-

ture that facilitates the possible downstream application of normally computationally intensive

procedures. Attributes can also be considered a kind of transferable context [190], providing

auxiliary information about an instance even when the attribute classifier is not trained on the

target dataset. Furthermore, another advantage is the possibility for re-identification by descrip-

tion, such as in the case where one may wish to search for all people wearing “red-shirts” and

“dark-pants”, or where a visual probe image is unavailable. The attributes we train in Chapter

3 are however, more discriminative when trained on data with proximal practical covariates to

the target data and require extensive annotation and the availability of sufficient instances for

training on each new camera. The core of this issue is the source of the ontology of attributes –

human expert knowledge. Humans can rely on a wide variety of inherently attributes and “soft-

biometrics” for re-identification tasks, whereas training modern machine learning discriminative

methods to recognise these attributes requires extensive labelling as well as an initial definition

of which attributes to annotate. This ontology selection strategy is inherently “top-down” since

the human expert defines it according to human intuition without regard to the specifics of the

machine learning methodology. This makes it difficult to tell a priori whether a given visual

attribute (i) can be recognised by a classifier, given (ii) the data available, and (iii) whether it will

be informative and useful in discriminating against other people.

In order to alleviate these weaknesses, we investigate a data-driven attribute representation

learning framework in Chapter 3. Taking inspiration from Chen et al.’s NEIL [30] as well as

inspiration from recent data-mining works using the Internet as a source such as Berg et al. [18]

and Li et al. [106] we obtain noisily labelled Internet photographs and their associated meta-text

from the Internet using a very broad range of search terms synonymous for “human”. Our data

are processed in order to build an unsupervised collection of 200 “quasi-attribute” datasets by

clustering the information present in the user-defined descriptions for each image’s person detec-

tions. These form the basis for our unsupervised, Internet-mined mid-level attribute representa-

tion, which are composed of latent semantic topics present in the underlying data, such as “paris

people” or “camoflage shorts”. To verify these clusters successfully encode information as man-

ually defined in the previous chapter, we demonstrate the top retrievals of a regression mapping

between the Internet attribute representation from Chapter 4 to the expert attributes as defined
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in Chapter 3. This Internet-attribute representation is not as immediately intuitive to humans as

the expert-defined attributes however, and requires labelling to learn the mapping function to en-

able interaction between the two attribute modalities to enable zero-shot re-identification queries.

Lastly, the use of LDA classifiers ensures the system scales linearly on the number of attributes

required, a necessary requirement to avoid using specialised computation equipment.

Whilst Chapter 4 assumes no labels are available, Chapter 5 considers the scenario where

there are some quantity of labelled instances available on the target camera-pair domain, and

that other camera-pair domains have been previously trained. In this chapter, transfer-learning

is used to learn the nonlinear combination of auxiliary domains that best describe the target

domain, given the available labels. The problem is formulated using a multi-kernel SVM model,

providing an efficient solver for the complex optimisation task involved and evaluates the source

domains automatically whilst learning an appropriate weighting of relevant source domains and

simultaneously ignoring unhelpful domains to prevent negative transfer. We evaluated this model

on public benchmark datasets that were unrelated and disjointly acquired from different locations

and times. Despite these differences, our method was successful at discovering only one of the

datasets was generally unhelpful, however the others could be assigned positive weightings and

contributed to the construction of a target classifier trained on a fraction of the usual label volume

required by other methods.

Re-identification research is usually undertaken with a set number of cameras, closed set of

probe and gallery images and video from static, immobile camera equipment. Whilst these are

reasonable assumptions for many scenarios, recent technological advances have introduced a se-

ries of potentially valuable surveillance-capable devices. We term these “MSPs”, and in Chapter

6 we formalise some variants of the standard definitions for re-identification that are more rel-

evant for mobile re-identification. These variants are designed to permit investigation into the

re-identification paradigm from a different perspective - what happens when the cameras are not

statically emplaced? When we don’t have entity labels to work with or match together? We

conclude that the aggressive pursuit of re-identification research on the limited publicly available

benchmark datasets currently available has lead to dataset bias [170], similar to trends in general

computer vision research [92] and that relative-pose is an important visual challenge to overcome

in future representation research. In keeping with the desire for scalable solutions, a completely

disjoint unsupervised DA module [64] is able to make an impact. One particularly critical con-
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clusion we draw is that the potential for continuously varying viewpoint change which is inherent

to MRP-sourced surveillance data detracts substantially from the performance of previously suc-

cessful supervised re-identification methods; leaving more basic methods as the best recourse.

Lastly, the problem of open-world ambiguity which has until recently been ignored [88, 27], is

explored in this context.

Although Chapters 3, 4, 5 and 6 are standalone in that in this thesis we treat them separately,

they are also synergistic. They cover many aspects that an all-aspect re-identification pipeline

would require for use in real-world, real-scale surveillance applications.

7.2 Future Work

• Currently, the attribute detectors used in Chapter 3 are sensitive to class imbalance – which

is an inherent risk in attribute training. The framework in that chapter is eventually made

robust to individual classifier error (after attribute-weighting) and we also find that this ef-

fect is less pronounced on different classifiers (by switching to LDA classifiers in Chapter

4), however since overall discriminative performance improves as a function of the average

accuracy of all attribute classifiers, solving the imbalance problem remains a worthwhile

objective. SVMs operate well on balanced data, but with imbalanced data tend toward

predicting the majority class since the separating hyperplane becomes skewed toward the

minority class, resulting in abnormally high false negative predictions [12]. Experiments

were performed in order to quantify whether standard solutions such as oversampling the

minority class or synthesising new instances [29] could alleviate this problem when train-

ing the SVM classifiers but did not prove to be helpful except for majority-class subsam-

pling as detailed in Chapter 3. Several further options exist that deserve attention, such

as (i) acquiring more data and labels, or (ii) adoption of a more interpretable classifica-

tion model such as Decision Trees as applied by Liu et al. in [116], which provide both a

human-readable solution that may inspire a more effective classification model, as well as

simultaneously being more robust toward the class imbalance problem by incorporating a

measure of class proportion to augment the standard metric, information gain.

• In Chapter 4, although we successfully map the Internet attributes to the expert ontology

created in Chapter 3, (i) the Internet attributes themselves are not immediately as directly

interpretable by humans and thus do not facilitate zero-shot re-identification (and therefore



7.2. Future Work 169

retrieval queries). Furthermore, (ii) the meta-text upon which the clustering step oper-

ates is inherently noisy due to being unconstrained and unfiltered beyond standard natural

language processing methods such as removing “stop” words, and because there is no guar-

antee the meta-text refers to the appearance of humans detected within the corresponding

photograph. To address (i), a promising direction would be to again exploit the available la-

bels produced in Chapter 3 in order to investigate the possibility of employing self-training,

a bootstrap technique, using seed images of labelled attribute detections from VIPeR and

other available datasets in conjunction with the large volume of already acquired Internet

data. Self-training begins with an initial model trained on fully labelled data, and then used

to estimate labels on a pool of data where the labels are unknown. A proportion of these

estimated labels are added into the training pool, and the model is expected to improve

after each subsequent iteration. Since the Internet, over time, continually makes new pho-

tographs available it is expected that the system could therefore continue to improve ad

infinitum in a similar fashion to [30], particularly if the meta-data where incorporated as a

prior during instance selection, addressing (ii). This strategy could alleviate both the class-

imbalance problem discussed earlier, as well as providing a directly human-interprettable

mid-level semantic representation from Internet data.

• There are several open issues for expanding Chapter 5’s transfer-learning framework in

order to improve performance and further reduce the amount of required annotation for

good performance on unseen camera-pair domains. So far we have only used simplistic

colour features and absolute performance should improve using better features as input.

Additionally, multiple features can readily be included in our MKL framework, as well

as the ability to fully incorporate fusion between LLFs and attributes – this is a crucial

area of investigation since LLFs and attributes are diverse and complementary cues for re-

identification. Another crucial aspect is the ability to transfer attribute classifiers between

individual camera domains in order to avoid per-camera annotation cost. With regards to

negative instance selection, we thus far randomly selected 10 negative pairs per positive

pair for training although we note Re-identification accuracy can be increased at the cost

of additional computation by increasing this ratio [6]. More interestingly we believe ac-

tive learning or instance mining approaches to optimally select the right instances from the

quadratic number of pairs is an important open question. Finally, we could also transduc-
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tively exploit the unlabelled data distribution in the target domain, and eventually move

towards completely annotation free transfer learning for re-identification.

• Chapter 6 introduces a provocation to the field of re-identification: we posit that the ma-

jority of re-identification work to date is unable to function for views that exhibit con-

tinuous view transformation and investigate several new variations on the standard re-

identification paradigm. We enjoyed some success in our approach, providing an initial

algorithm for the new paradigm via an unsupervised domain adaptation method that im-

proved parity between disjoint “flights” (domains) by aligning the feature distributions.

While re-identification performance in the “within-flight” case appears to improve fol-

lowing the application of domain adaptation this is likely related to how much motion is

present in the entire flight i.e. if the UAV is relatively stable throughout then domain adap-

tation helps uniformly throughout the flight. However, if the surveillance video undergoes

more dramatic view transformations such as those caused by more radical manoeuvring

by the UAV, we expect this advantage to be much less. Therefore, for more robust re-

identification during these cases it would be worthwhile to investigate more comprehen-

sive solutions to this problem. Several possibilities for research in this direction exist. A

simple extension might involve learning disjoint models for re-identification using human

detections featuring motion-blur in a particular direction and dynamically switching to

the relevant model depending on the present orientation and velocity of the UAV. A more

generalisable approach would be to apply an online, unsupervised domain-adaptation algo-

rithm across a temporal sliding-window of detections in order to “smooth” the distribution

change between blocks of consecutive frames; the assumption being that multiple detec-

tions of the same person will be temporally proximal and thus online domain adaptation

will facilitate the reconciliation of these detections into a single identity.
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