5,177 research outputs found

    Consistent Testing for Recurrent Genomic Aberrations

    Full text link
    Genomic aberrations, such as somatic copy number alterations, are frequently observed in tumor tissue. Recurrent aberrations, occurring in the same region across multiple subjects, are of interest because they may highlight genes associated with tumor development or progression. A number of tools have been proposed to assess the statistical significance of recurrent DNA copy number aberrations, but their statistical properties have not been carefully studied. Cyclic shift testing, a permutation procedure using independent random shifts of genomic marker observations on the genome, has been proposed to identify recurrent aberrations, and is potentially useful for a wider variety of purposes, including identifying regions with methylation aberrations or overrepresented in disease association studies. For data following a countable-state Markov model, we prove the asymptotic validity of cyclic shift pp-values under a fixed sample size regime as the number of observed markers tends to infinity. We illustrate cyclic shift testing for a variety of data types, producing biologically relevant findings for three publicly available datasets.Comment: 35 pages, 7 figure

    Genomic aberrations in normal tissue adjacent to HER2-amplified breast cancers: field cancerization or contaminating tumor cells?

    Get PDF
    Field cancerization effects as well as isolated tumor cell foci extending well beyond the invasive tumor margin have been described previously to account for local recurrence rates following breast conserving surgery despite adequate surgical margins and breast radiotherapy. To look for evidence of possible tumor cell contamination or field cancerization by genetic effects, a pilot study (Study 1: 12 sample pairs) followed by a verification study (Study 2: 20 sample pairs) were performed on DNA extracted from HER2-positive breast tumors and matching normal adjacent mammary tissue samples excised 1-3 cm beyond the invasive tumor margin. High-resolution molecular inversion probe (MIP) arrays were used to compare genomic copy number variations, including increased HER2 gene copies, between the paired samples; as well, a detailed histologic and immunohistochemical (IHC) re-evaluation of all Study 2 samples was performed blinded to the genomic results to characterize the adjacent normal tissue composition bracketing the DNA-extracted samples. Overall, 14/32 (44 %) sample pairs from both studies produced genome-wide evidence of genetic aberrations including HER2 copy number gains within the adjacent normal tissue samples. The observed single-parental origin of monoallelic HER2 amplicon haplotypes shared by informative tumor-normal pairs, as well as commonly gained loci elsewhere on 17q, suggested the presence of contaminating tumor cells in the genomically aberrant normal samples. Histologic and IHC analyses identified occult 25-200 μm tumor cell clusters overexpressing HER2 scattered in more than half, but not all, of the genomically aberrant normal samples re-evaluated, but in none of the genomically normal samples. These genomic and microscopic findings support the conclusion that tumor cell contamination rather than genetic field cancerization represents the likeliest cause of local clinical recurrence rates following breast conserving surgery, and mandate caution in assuming the genomic normalcy of histologically benign appearing peritumor breast tissue

    Specific genomic aberrations in primary colorectal cancer are associated with liver metastases

    Get PDF
    Background: Accurate staging of colorectal cancer (CRC) with clinicopathological parameters is important for predicting prognosis and guiding treatment but provides no information about organ site of metastases. Patterns of genomic aberrations in primary colorectal tumors may reveal a chromosomal signature for organ specific metastases. Methods: Array Comparative Genomic Hybridization (aCGH) was employed to asses DNA copy number changes in primary colorectal tumors of three distinctive patient groups. This included formalin-fixed, paraffin-embedded tissue of patients who developed liver metastases (LM; n = 36), metastases (PM; n = 37) and a group that remained metastases-free (M0; n = 25). A novel statistical method for identifying recurrent copy number changes, KC-SMART, was used to find specific locations of genomic aberrations specific for various groups. We created a classifier for organ specific metastases based on the aCGH data using Prediction Analysis for Microarrays (PAM). Results: Specifically in the tumors of primary CRC patients who subsequently developed liver metastasis, KC-SMART analysis identified genomic aberrations on chromosome 20q. LM-PAM, a shrunken centroids classifier for liver metastases occurrence, was able to distinguish the LM group from the other groups (M0&PM) with 80% accuracy (78% sensitivity and 86% specificity). The classification is predominantly based on chromosome 20q aberrations. Conclusion: Liver specific CRC metastases may be predicted with a high accuracy based on specific genomic aberrations in the primary CRC tumor. The ability to predict the site of metastases is important for improvement of personalized patient management.MediamaticsElectrical Engineering, Mathematics and Computer Scienc

    Genomic aberrations in borderline ovarian tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>According to the scientific literature, less than 30 borderline ovarian tumors have been karyotyped and less than 100 analyzed for genomic imbalances by CGH.</p> <p>Methods</p> <p>We report a series of borderline ovarian tumors (n = 23) analyzed by G-banding and karyotyping as well as high resolution CGH; in addition, the tumors were analyzed for microsatellite stability status and by FISH for possible 6q deletion.</p> <p>Results</p> <p>All informative tumors were microsatellite stable and none had a deletion in 6q27. All cases with an abnormal karyotype had simple chromosomal aberrations with +7 and +12 as the most common. In three tumors with single structural rearrangements, a common breakpoint in 3q13 was detected. The major copy number changes detected in the borderline tumors were gains from chromosome arms 2q, 6q, 8q, 9p, and 13q and losses from 1p, 12q, 14q, 15q, 16p, 17p, 17q, 19p, 19q, and 22q. The series included five pairs of bilateral tumors and, in two of these pairs, informative data were obtained as to their clonal relationship. In both pairs, similarities were found between the tumors from the right and left side, strongly indicating that bilaterality had occurred via a metastatic process. The bilateral tumors as a group showed more aberrations than did the unilateral ones, consistent with the view that bilaterality is a sign of more advanced disease.</p> <p>Conclusion</p> <p>Because some of the imbalances found in borderline ovarian tumors seem to be similar to imbalances already known from the more extensively studied overt ovarian carcinomas, we speculate that the subset of borderline tumors with detectable imbalances or karyotypic aberrations may contain a smaller subset of tumors with a tendency to develop a more malignant phenotype. The group of borderline tumors with no imbalances would, in this line of thinking, have less or no propensity for clonal evolution and development to full-blown carcinomas.</p

    Genomic aberrations relate early and advanced stage ovarian cancer

    Get PDF
    Background Because of the distinct clinical presentation of early and advanced stage ovarian cancer, we aim to clarify whether these disease entities are solely separated by time of diagnosis or whether they arise from distinct molecular events. Methods Sixteen early and sixteen advanced stage ovarian carcinomas, matched for histological subtype and differentiation grade, were included. Genomic aberrations were compared for each early and advanced stage ovarian cancer by array comparative genomic hybridization. To study how the aberrations correlate to the clinical characteristics of the tumors we clustered tumors based on the genomic aberrations. Results The genomic aberration patterns in advanced stage cancer equalled those in early stage, but were more frequent in advanced stage (p=0.012). Unsupervised clustering based on genomic aberrations yielded two clusters that significantly discriminated early from advanced stage (p= 0.001), and that did differ significantly in survival (p= 0.002). These clusters however did give a more accurate prognosis than histological subtype or differentiation grade. Conclusion This study indicates that advanced stage ovarian cancer either progresses from early stage or from a common precursor lesion but that they do not arise from distinct carcinogenic molecular events. Furthermore, we show that array comparative genomic hybridization has the potential to identify clinically distinct patients

    Dysregulation of H/ACA ribonucleoprotein components in chronic lymphocytic leukemia

    Get PDF
    Telomeres are protective repeats of TTAGGG sequences located at the end of human chromosomes. They are essential to maintain chromosomal integrity and genome stability. Telomerase is a ribonucleoprotein complex containing an internal RNA template (hTR) and a catalytic subunit (hTERT). The human hTR gene consists of three major domains; among them the H/ACA domain is essential for telomere biogenesis. H/ACA ribonucleoprotein (RNP) complex is composed of four evolutionary conserved proteins, including dyskerin (encoded by DKC1 gene), NOP10, NHP2 and GAR1. In this study, we have evaluated the expression profile of the H/ACA RNP complex genes: DKC1, NOP10, NHP2 and GAR1, as well as hTERT and hTR mRNA levels, in patients with chronic lymphocytic leukemia (CLL). Results were correlated with the number and type of genetic alteration detected by conventional cytogenetics and FISH (fluorescence in situ hybridization), IGHV (immunoglobulin heavy chain variable region) mutational status, telomere length (TL) and clinico pathological characteristics of patients. Our results showed significant decreased expression of GAR1, NOP10, DKC1 and hTR, as well as increased mRNA levels of hTERT in patients compared to controls (p=0.04). A positive correlation between the expression of GAR1-NHP2, GAR1-NOP10, and NOP10-NHP2 (p=0.0001), were observed. The analysis taking into account prognostic factors showed a significant increased expression of hTERT gene in unmutated-IGHV cases compared to mutated-CLL patients (p = 0.0185). The comparisons among FISH groups exhibited increased expression of DKC1 in cases with two or more alterations with respect to no abnormalities, trisomy 12 and del13q14, and of NHP2 and NOP10 compared to those with del13q14 (p = 0.03). The analysis according to TL showed a significant increased expression of hTERT (p = 0.0074) and DKC1 (p = 0.0036) in patients with short telomeres compared to those with long TL. No association between gene expression and clinical parameters was found. Our results suggest a role for these telomere associated genes in genomic instability and telomere dysfunction in CLL.Fil: Dos Santos, Patricia Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Panero, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Stanganelli, Carmen Graciela. Academia Nacional de Medicina de Buenos Aires. Instituto de Investigaciones Hematológicas "Mariano R. Castex"; ArgentinaFil: Palau Nagore, Maria Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Stella, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Bezares, Raimundo F.. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Dr. Teodoro Álvarez"; ArgentinaFil: Slavutsky, Irma Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentin

    Statistical model-based testing to evaluate the recurrence of genomic aberrations

    Get PDF
    Motivation: In cancer genomes, chromosomal regions harboring cancer genes are often subjected to genomic aberrations like copy number alteration and loss of heterozygosity. Given this, finding recurrent genomic aberrations is considered an apt approach for screening cancer genes. Although several permutation-based tests have been proposed for this purpose, none of them are designed to find recurrent aberrations from the genomic dataset without paired normal sample controls. Their application to unpaired genomic data may lead to false discoveries, because they retrieve pseudo-aberrations that exist in normal genomes as polymorphisms

    Array based genetic profiling of chronic lymphocytic leukemia

    Get PDF
    Although no common genetic defect has been described in chronic lymphocytic leukemia (CLL), recurrent genomic aberrations (i.e. deletions of chromosome 11q, 13q, 17p and trisomy 12) are important for prognostication. Deletion of 13q as single aberration is associated with the best prognosis, whereas del(11q) and del(17p) predict a poor outcome. Recent development of high-resolution genomic techniques, i.e. microarrays, provides effective detection of the known recurrent aberrations and simultaneous exploration of the whole genome. Hence, this thesis aimed to map genomic aberrations in CLL through application of high-resolution microarrays. In paper I, we investigated the pros and cons of four differently designed microarray platforms. All platforms readily detected the known recurrent aberrations in CLL as well as other large copy-number aberrations (CNAs). The difference in technical performance and discrepancies in detection of small CNAs were influenced by differential platform density, different reference sets, and platform-specific analysis. In paper II and IV, 250K single nucleotide polymorphism (SNP)-array screening of 203 and 370 samples, respectively, detected CNAs in >90% and the known recurrent aberrations in >70% of patients. Moreover, novel recurrent gains of chromosome 2p in combination with 11q deletion and copy-number neutral loss of heterozygosity on chromosome 13q were revealed. Furthermore, a high genomic complexity was correlated to worse survival, but also closely linked to poor-prognostic markers. In addition, study IV also included follow-up samples (n=43) to investigate clonal evolution, which showed that patients with unmutated immunoglobulin heavy chain variable (IGHV) genes and treated patients with mutated IGHV genes often gained novel aberrations. In paper III, high-density screening revealed a different spectrum of genomic aberrations in CLL patients with ‘stereotyped’ IGHV3-21 (poor-prognostic) versus IGHV4-34 (good-prognostic) B-cell receptors. IGHV3-21 subset #2 (n=29) showed a high frequency of samples carrying genomic aberrations, and a particularly high prevalence of del(13q) and del(11q), which may correspond to the adverse survival reported for these patients. In contrast, IGHV4-34 subset #4 (n=17) showed a lower frequency and complexity of CNAs, which may reflect an inherent low-proliferative disease, preventing accumulation of genomic alterations. In summary, the studies included in this thesis provided a greater insight of genomic aberrations in newly diagnosed patients, at follow-up and in different subgroups of CLL
    corecore