25,962 research outputs found

    Finite Element Simulation of Dense Wire Packings

    Full text link
    A finite element program is presented to simulate the process of packing and coiling elastic wires in two- and three-dimensional confining cavities. The wire is represented by third order beam elements and embedded into a corotational formulation to capture the geometric nonlinearity resulting from large rotations and deformations. The hyperbolic equations of motion are integrated in time using two different integration methods from the Newmark family: an implicit iterative Newton-Raphson line search solver, and an explicit predictor-corrector scheme, both with adaptive time stepping. These two approaches reveal fundamentally different suitability for the problem of strongly self-interacting bodies found in densely packed cavities. Generalizing the spherical confinement symmetry investigated in recent studies, the packing of a wire in hard ellipsoidal cavities is simulated in the frictionless elastic limit. Evidence is given that packings in oblate spheroids and scalene ellipsoids are energetically preferred to spheres.Comment: 17 pages, 7 figures, 1 tabl

    Finite element simulation of noise radiation through shear layers

    No full text
    Predicting sound propagation through the jet exhaust of an aero-engine presents the specific difficulty of representing the refraction effect of the mean flow shear. This is described in full in the linearised Euler equations but this model remains rather expensive to solve numerically. The other model commonly used in industry, the linearised potential theory, is faster to solve but needs to be modified to represent a shear layer. This paper presents a way to describe a vortex sheet in a finite element model based on the linearised potential theory. The key issues to address are the continuity of pressure and displacement that have to be enforced across the vortex sheet, as well as the implementation of the Kutta condition at the nozzle lip. Validation results are presented by comparison with analytical results. It is shown that the discretization of the continuity conditions is crucial to obtain a robust and accurate numerical model

    Finite element simulation of magnesium alloys laser beam welding

    Get PDF
    The authors are grateful to FONDERIE MESSIER (HONSEL group) that provided the as-cast magnesium alloy workpieces. The authors would like also to acknowledge the technical support of Dr. Morraru of the IMS Laboratory, ARTS ET MÉTIERS PARISTECH, Aix En Provence, France.In this paper, a three-dimensional finite element model is developed to simulate thermal history magnesium-based alloys during laser beam welding. Space–time temperature distributions in weldments are predicted from the beginning of welding to the final cooling. The finite element calculations were performed using Cast3M code with which the heat equation is solved considering a non-linear transient behaviour. The applied loading is a moving heat source that depends on process parameters such as power density, laser beam dimensions and welding speed, and it is associated to moving boundary conditions. Experiments were carried out to determine temperature evolution during welding and to measure the laser weld width. By comparing the thermal model answers with the measurements, it is found that numerical simulations results are in a good agreement with the experimental data

    Finite element simulation of three-dimensional free-surface flow problems

    Get PDF
    An adaptive finite element algorithm is described for the stable solution of three-dimensional free-surface-flow problems based primarily on the use of node movement. The algorithm also includes a discrete remeshing procedure which enhances its accuracy and robustness. The spatial discretisation allows an isoparametric piecewise-quadratic approximation of the domain geometry for accurate resolution of the curved free surface. The technique is illustrated through an implementation for surface-tension-dominated viscous flows modelled in terms of the Stokes equations with suitable boundary conditions on the deforming free surface. Two three-dimensional test problems are used to demonstrate the performance of the method: a liquid bridge problem and the formation of a fluid droplet

    magnum.fe: A micromagnetic finite-element simulation code based on FEniCS

    Full text link
    We have developed a finite-element micromagnetic simulation code based on the FEniCS package called magnum.fe. Here we describe the numerical methods that are applied as well as their implementation with FEniCS. We apply a transformation method for the solution of the demagnetization-field problem. A semi-implicit weak formulation is used for the integration of the Landau-Lifshitz-Gilbert equation. Numerical experiments show the validity of simulation results. magnum.fe is open source and well documented. The broad feature range of the FEniCS package makes magnum.fe a good choice for the implementation of novel micromagnetic finite-element algorithms

    Finite Element Simulation of Light Propagation in Non-Periodic Mask Patterns

    Full text link
    Rigorous electromagnetic field simulations are an essential part for scatterometry and mask pattern design. Today mainly periodic structures are considered in simulations. Non-periodic structures are typically modeled by large, artificially periodified computational domains. For systems with a large radius of influence this leads to very large computational domains to keep the error sufficiently small. In this paper we review recent advances in the rigorous simulation of isolated structures embedded into a surrounding media. We especially address the situation of a layered surrounding media (mask or wafer) with additional infinite inhomogeneities such as resist lines. Further we detail how to extract the far field information needed for the aerial image computation in the non-periodic setting.Comment: Proceedings SPIE conference Photomask Japan (2008

    Progress in mixed Eulerian-Lagrangian finite element simulation of forming processes

    Get PDF
    A review is given of a mixed Eulerian-Lagrangian finite element method for simulation of forming processes. This method permits incremental adaptation of nodal point locations independently from the actual material displacements. Hence numerical difficulties due to large element distortions, as may occur when the updated Lagrange method is applied, can be avoided. Movement of (free) surfaces can be taken into account by adapting nodal surface points in a way that they remain on the surface. Hardening and other deformation path dependent properties are determined by incremental treatment of convective terms. A local and a weighed global smoothing procedure is introduced in order to avoid numerical instabilities and numerical diffusion. Prediction of contact phenomena such as gap openning and/or closing and sliding with friction is accomplished by a special contact element. The method is demonstrated by simulations of an upsetting process and a wire drawing process
    • 

    corecore