85,398 research outputs found

    On the Asymptotic Performance of Bit-Wise Decoders for Coded Modulation

    Get PDF
    Two decoder structures for coded modulation over the Gaussian and flat fading channels are studied: the maximum likelihood symbol-wise decoder, and the (suboptimal) bit-wise decoder based on the bit-interleaved coded modulation paradigm. We consider a 16-ary quadrature amplitude constellation labeled by a Gray labeling. It is shown that the asymptotic loss in terms of pairwise error probability, for any two codewords caused by the bit-wise decoder, is bounded by 1.25 dB. The analysis also shows that for the Gaussian channel the asymptotic loss is zero for a wide range of linear codes, including all rate-1/2 convolutional codes

    Extended Non-Binary Low-Density Parity-Check Codes over Erasure Channels

    Full text link
    Based on the extended binary image of non-binary LDPC codes, we propose a method for generating extra redundant bits, such as to decreases the coding rate of a mother code. The proposed method allows for using the same decoder, regardless of how many extra redundant bits have been produced, which considerably increases the flexibility of the system without significantly increasing its complexity. Extended codes are also optimized for the binary erasure channel, by using density evolution methods. Nevertheless, the results presented in this paper can easily be extrapolated to more general channel models.Comment: ISIT 2011, submitte

    Skip-Sliding Window Codes

    Full text link
    Constrained coding is used widely in digital communication and storage systems. In this paper, we study a generalized sliding window constraint called the skip-sliding window. A skip-sliding window (SSW) code is defined in terms of the length LL of a sliding window, skip length JJ, and cost constraint EE in each sliding window. Each valid codeword of length L+kJL + kJ is determined by k+1k+1 windows of length LL where window ii starts at (iJ+1)(iJ + 1)th symbol for all non-negative integers ii such that iki \leq k; and the cost constraint EE in each window must be satisfied. In this work, two methods are given to enumerate the size of SSW codes and further refinements are made to reduce the enumeration complexity. Using the proposed enumeration methods, the noiseless capacity of binary SSW codes is determined and observations such as greater capacity than other classes of codes are made. Moreover, some noisy capacity bounds are given. SSW coding constraints arise in various applications including simultaneous energy and information transfer.Comment: 28 pages, 11 figure

    PopCORN: Hunting down the differences between binary population synthesis codes

    Get PDF
    Binary population synthesis (BPS) modelling is a very effective tool to study the evolution and properties of close binary systems. The uncertainty in the parameters of the model and their effect on a population can be tested in a statistical way, which then leads to a deeper understanding of the underlying physical processes involved. To understand the predictive power of BPS codes, we study the similarities and differences in the predicted populations of four different BPS codes for low- and intermediate-mass binaries. We investigate whether the differences are caused by different assumptions made in the BPS codes or by numerical effects. To simplify the complex problem of comparing BPS codes, we equalise the inherent assumptions as much as possible. We find that the simulated populations are similar between the codes. Regarding the population of binaries with one WD, there is very good agreement between the physical characteristics, the evolutionary channels that lead to the birth of these systems, and their birthrates. Regarding the double WD population, there is a good agreement on which evolutionary channels exist to create double WDs and a rough agreement on the characteristics of the double WD population. Regarding which progenitor systems lead to a single and double WD system and which systems do not, the four codes agree well. Most importantly, we find that for these two populations, the differences in the predictions from the four codes are not due to numerical differences, but because of different inherent assumptions. We identify critical assumptions for BPS studies that need to be studied in more detail.Comment: 13 pages, +21 pages appendix, 35 figures, accepted for publishing in A&A, Minor change to match published version, most important the added link to the website http://www.astro.ru.nl/~silviato/popcorn for more detailed figures and informatio

    Numerical and analytical bounds on threshold error rates for hypergraph-product codes

    Get PDF
    We study analytically and numerically decoding properties of finite rate hypergraph-product quantum LDPC codes obtained from random (3,4)-regular Gallager codes, with a simple model of independent X and Z errors. Several non-trival lower and upper bounds for the decodable region are constructed analytically by analyzing the properties of the homological difference, equal minus the logarithm of the maximum-likelihood decoding probability for a given syndrome. Numerical results include an upper bound for the decodable region from specific heat calculations in associated Ising models, and a minimum weight decoding threshold of approximately 7%.Comment: 14 pages, 5 figure
    corecore