8,840 research outputs found

    Homochirality in an early peptide world

    Full text link
    A recently proposed model of non-autocatalytic reactions in dipeptide reactions leading to spontaneous symmetry breaking and homochirality is examined. The model is governed by activation, polymerization, epimerization and depolymerization of amino acids. Symmetry breaking is primarily a consequence of the fact that the rates of reactions involving homodimers and heterodimers are different, i.e., stereoselective, and on the fact that epimerization can only occur on the N-terminal residue and not on the Cterminal residue. This corresponds to an auto-inductive cyclic process that works only in one sense. It is argued that epimerization mimics both autocatalytic behavior as well as mutual antagonism - both of which were known to be crucial for producing full homochirality.Comment: 19 pages, 7 figures, 3 boxe

    Structural Insights into the Epimerization of β-1,4-Linked Oligosaccharides Catalyzed by Cellobiose 2-Epimerase, the Sole Enzyme Epimerizing Non-anomeric Hydroxyl Groups of Unmodified Sugars

    Get PDF
    Cellobiose 2-epimerase (CE) reversibly converts d-glucose residues into d-mannose residues at the reducing end of unmodified β1,4-linked oligosaccharides, including β-1,4-mannobiose, cellobiose, and lactose. CE is responsible for conversion of β1,4-mannobiose to 4-O-β-d-mannosyl-d-glucose in mannan metabolism. However, the detailed catalytic mechanism of CE is unclear due to the lack of structural data in complex with ligands. We determined the crystal structures of halothermophile Rhodothermus marinus CE (RmCE) in complex with substrates/products or intermediate analogs, and its apo form. The structures in complex with the substrates/products indicated that the residues in the β5-β6 loop as well as those in the inner six helices form the catalytic site. Trp-322 and Trp-385 interact with reducing and non-reducing end parts of these ligands, respectively, by stacking interactions. The architecture of the catalytic site also provided insights into the mechanism of reversible epimerization. His-259 abstracts the H2 proton of the d-mannose residue at the reducing end, and consistently forms the cis-enediol intermediate by facilitated depolarization of the 2-OH group mediated by hydrogen bonding interaction with His-200. His-390 subsequently donates the proton to the C2 atom of the intermediate to form a d-glucose residue. The reverse reaction is mediated by these three histidines with the inverse roles of acid/base catalysts. The conformation of cellobiitol demonstrated that the deprotonation/reprotonation step is coupled with rotation of the C2-C3 bond of the open form of the ligand. Moreover, it is postulated that His-390 is closely related to ring opening/closure by transferring a proton between the O5 and O1 atoms of the ligand

    Pd-catalyzed enantioselective aerobic oxidation of secondary alcohols: Applications to the total synthesis of alkaloids

    Get PDF
    Enantioselective syntheses of the alkaloids (-)-aurantioclavine, (+)-amurensinine, (-)-lobeline, and (-)- and (+)-sedamine are described. The syntheses demonstrate the effectiveness of the Pd-catalyzed asymmetric oxidation of secondary alcohols in diverse contexts and the ability of this methodology to set the absolute configuration of multiple stereocenters in a single operation. The utility of an aryne C-C insertion reaction in accessing complex polycyclic frameworks is also described

    Toward homochiral protocells in noncatalytic peptide systems

    Full text link
    The activation-polymerization-epimerization-depolymerization (APED) model of Plasson et al. has recently been proposed as a mechanism for the evolution of homochirality on prebiotic Earth. The dynamics of the APED model in two-dimensional spatially-extended systems is investigated for various realistic reaction parameters. It is found that the APED system allows for the formation of isolated homochiral proto-domains surrounded by a racemate. A diffusive slowdown of the APED network such as induced through tidal motion or evaporating pools and lagoons leads to the stabilization of homochiral bounded structures as expected in the first self-assembled protocells.Comment: 10 pages, 5 figure

    Scale and structure of time-averaging (age mixing) in terrestrial gastropod assemblages from Quaternary eolian deposits of the eastern Canary Islands

    Get PDF
    Quantitative estimates of time-averaging (age mixing) in gastropod shell accumulations from Quaternary (the late Pleistocene and Holocene) eolian deposits of Canary Islands were obtained by direct dating of individual gastropods obtained from exceptionally well-preserved dune and paleosol shell assemblages. A total of 203 shells of the gastropods Theba geminata and T. arinagae, representing 44 samples (= strati graphic horizons) from 14 sections, were dated using amino acid (isoleucine) epimerization ratios calibrated with 12 radiocarbon dates. Most samples reveal a substantial variation in shell age that exceeds the error that could be generated by dating imprecision, with the mean within-sample shell age range of 6670 years and the mean standard deviation of 2920 years. Even the most conservative approach (Monte Carlo simulations with a non-sequential Bonferroni correction) indicates that at least 25% of samples must have undergone substantial time-averaging (e.g., age variations within those samples cannot be explained by dating imprecision alone). Samples vary in shell age structure, including both left-skewed (17 out of 44) and right-skewed distributions (26 out of 44) as well as age distributions with a highly variable kurtosis. Dispersion and shape of age distributions of samples do not show any notable correlation with the stratigraphic age of samples, suggesting that the structure and scale of temporal mixing is time invariant. The statistically significant multi-millennial time-averaging observed here is consistent with previous studies of shell accumulations from various depositional settings and reinforces the importance of dating numerous specimens per horizon in geochrono logical studies. Unlike in the case of marine samples, typified by right-skewed age distributions (attributed to an exponential-like shell loss from older age classes), many of the samples analyzed here displayed leftskewed distributions, suggestive of different dynamics of age mixing in marine versus terrestrial shell accumulations

    Diastereodivergent synthesis of chiral tetrahydropyrrolodiazepinediones via a one-pot intramolecular aza-Michael/lactamization sequence

    Full text link
    A modular and diastereodivergent synthesis of tetrahydro-1H-pyrrolo[1,2d]diazepine-(2,5)-diones is presented. The tetrahydropyrrolodiazepinedione scaffold is obtained via a base-mediated three-step isomerization/tandem cyclization of amino acid-coupled homoallylic amino esters. Diastereoselectivity of the process is mediated by the interplay of a kinetic cyclization event and a propensity for thermodynamic epimerization at two labile chiral centers, giving rise to two distinct major diastereomers dependent on starting material stereochemistry and reaction conditions selected. Herein, we present a synthetic and computational study for this tandem process on a variety of amino ester substrates.Work at the BU-CMD is supported by R24GM111625. The authors wish to thank Dr. Jeffrey Bacon for assistance with Xray crystallographic analysis, Dr. Norman Lee for assistance with high-resolution mass spectrometry analysis, and Dr. Paul Ralifo for assistance with NMR analysis. NMR (CHE-0619339) and MS (CHE-0443618) facilities at Boston University are supported by the NSF. (CHE-0619339 - NSF; CHE-0443618 - NSF; R24GM111625)Published versionSupporting documentationAccepted manuscrip

    Simultaneous cyclization and derivatization of peptides using cyclopentenediones

    Get PDF
    Unprotected linear peptides containing N-terminal cysteines and another cysteine residue can be simultaneously cyclized and derivatized using 2,2-disubstituted cyclopentenediones. High yields of cyclic peptide conjugates may be obtained in short reaction times using only a slight excess of the cyclopentenedione moiety under TEMPO catalysis and in the presence of LiCl

    Heparan sulfate proteoglycans undergo differential expression alterations in left sided colorectal cancer, depending on their metastatic character

    Get PDF
    Abstract Background Heparan sulfate proteoglycans (HSPGs) are complex molecules which play a role in the invasion and growth and metastatic properties of cancerous cells. In this work we analyze changes in the patterns of expression of HSPGs in left sided colorectal cancer (LSCRC), both metastatic and non-metastatic, and the results are also compared with those previously obtained for right sided tumors (RSCRCs). Methods Eighteen LSCRCs were studied using qPCR to analyze the expression of both the proteoglycan core proteins and the enzymes involved in heparan sulfate chain biosynthesis. Certain HSPGs also carry chondroitin sulfate chains and so we also studied the genes involved in its biosynthesis. The expression of certain genes that showed significant expression differences were also analysed using immunohistochemical techniques. Results Changes in proteoglycan core proteins were dependent on their location, and the main differences between metastatic and non-metastatic tumors affected cell-surface glypicans, while other molecules were quite similar. Glypicans were also responsible for the main differences between RS- and LS- malignances. Regarding the biosynthesis of heparan sulfate chains, differential alterations in transcription depending on the presence or not of metastasis affected genes involved in the modification of uronic acid (epimerization and 2-O sulfation), and some isoforms responsible for sulfation of glucosamine (NDST1, HS6ST1). Moreover, in RSCRCs differences were preferentially found in the expression of genes involved in C6 and C3 sulfation of glucosamine, but not in NDSTs or SULFs. Finally, synthesis of chondroitin sulfate showed some alterations, which affected various steps, including polimerization and the modification of chains, but the main variations dependent on the presence of metastases were epimerization and 6C sulfation; however, when compared with RSCRCs, the essential divergences affected polymerization of the chains and the 6C sulfation of the galactosamine residue. Conclusions We evidenced alterations in the expression of HSPGs, including the expression of cell surface core proteins, many glycosiltransferases and some enzymes that modify the GAG chains in LSCRCs, but this was dependent on the metastatic nature of the tumor. Some of these alterations are shared with RSCRCs, while others, focused on specific gene groups, are dependent on tumor localization
    corecore