-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by Ghent University Academic Bibliography

Available online at www.sciencedirect.com
— g

*.” ScienceDirect

[

Qs
ELSEVIER Archives of Biochemistry and Biophysics 460 (2007) 254-261

www.elsevier.com/locate/yabbi

Vitamin D

Removal of C-ring from the CD-ring skeleton
of 1a,25-dihydroxyvitamin D5 does not alter
its target tissue metabolism significantly

G. Satyanarayana Reddy ** Matthew Robinson ?, Guochun Wang ¢,
G. Tayhas R. Palmore ¢, Lynn Gennaro ¢, Paul Vouros ¢, Pierre De Clercq ®,
Maurits Vandewalle ¢, Wu Yong ¢, Shi Ling ¢, Annemieke Verstuyf', Roger Bouillon f

4 Epimer LLC, 4 Richmond Square, Suite 500, Providence, RI 02906, USA
b Department of Chemistry, Brown University, Box H, Providence, RI 02912, USA
¢ Division of Engineering, Brown University, Providence, RI 02912, USA
4 Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
¢ Vakgroep voor Organische Chemie, Universiteit Gent, Gent, Belgium
[ Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Katholieke Universiteit, Leuven, Belgium

Received 24 July 2006, and in revised form 13 November 2006
Available online 21 November 2006

Abstract

It is now well established that 10,25(0OH),D; is metabolized in its target tissues through the modifications of both side chain and A-ring.
The C-24 oxidation pathway is the side chain modification pathway through which 10,25(0OH),D; is metabolized into calcitroic acid. The
C-3 epimerization pathway is the A-ring modification pathway through which 10,25(0OH),D; is metabolized into 10,25(OH),-3-epi-D5. Dur-
ing the past two decades, a great number of vitamin D analogs were synthesized by altering the structure of both side chain and A-ring of
10,25(0OH),D; with the aim to generate novel vitamin D compounds that inhibit proliferation and induce differentiation of various types of
normal and cancer cells without causing significant hypercalcemia. Previously, we used some of these analogs as molecular probes to examine
how changes in 10,25(OH),Dj; structure would affect its target tissue metabolism. Recently, several nonsteroidal analogs of 10,25(OH),D5
with unique biological activity profiles were synthesized. Two of the analogs, SL 117 and WU 515 lack the C-ring of the CD-ring skeleton of
10,25(0OH),D5. SL 117 contains the same side chain as that of 10,25(0OH),D;, while WU 515 contains an altered side chain with a 23-yne
modification combined with hexafluorination at C-26 and C-27. Presently, it is unknown how the removal of C-ring from the CD-ring skele-
ton of 10,25(0OH),D; would affect its target tissue metabolism. In the present study, we compared the metabolic fate of SL 117 and WU 515
with that of 10,25(OH),Dj; in both the isolated perfused rat kidney, which expresses only the C-24 oxidation pathway and rat osteosarcoma
cells (UMR 106), which express both the C-24 oxidation and C-3 epimerization pathways. The results of our present study indicate that SL
117 is metabolized like 10,25(OH),D5, into polar metabolites via the C-24 oxidation pathway in both rat kidney and UMR 106 cells. As
expected, WU 515 with altered side chain structure is not metabolized via the C-24 oxidation pathway. Unlike in rat kidney, both SL 117 and
WU 515 are also metabolized into less polar metabolites in UMR 106 cells. These metabolites displayed GC and MS characteristics consis-
tent with A-ring epimerization and were putatively assigned as C-3 epimers of SL 117 and WU 515. In summary, we report that removal of
the C-ring from the CD-ring skeleton of 10,25(0OH),D; does not alter its target tissue metabolism significantly.
© 2006 Elsevier Inc. All rights reserved.
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The discovery that structural modifications of the seco-
steroid hormone, 10(,25(OH)2D31 can result in the dissocia-
tion of the hormone’s action on regulating cell growth
and differentiation from its calcemic actions, has led to the
synthesis of numerous vitamin D analogs with a wide spec-
trum of biological actions. For a comprehensive under-
standing of this topic, the reader is referred to a few
excellent reviews [1-5]. Recently, several nonsteroidal ana-
logs of 10,25(OH),D; with unique biological activity
prNSofiles were synthesized. These novel nonsteroidal vita-
min D analogs, lack either the full five membered D-ring
(C-ring analogs) or the full six membered C-ring (D-ring
analogs) or both C- and D-rings (E-ring analogs) of the
CD-ring skeleton of 10,25(0OH),D; [6,7] We selected two of
the D-ring analogs (SL 117 and WU 515) for our present
study. SL 117, the basic D-ring analog contains the same
side chain as that of 10,25(OH),D; (Fig. 1). This analog is
equipotent to 10,25(OH),D5 in modulating cell growth and
differentiation in vitro but generates only minimal calcemic
actions in vivo (Table 1). Another D-ring analog, WU 515
contains an altered side chain with a 23-yne modification
combined with hexafluorination at C-26 and C-27 (Fig. 1).
This analog is also less calcemic like SL 117 but is several
fold more potent than 10,25(OH),D; in modulating cell
growth and differentiation of a variety of cell types (Table
1). Thus, removal of the C-ring from the CD-ring skeleton
of 10,25(OH),D; generates novel analogs with potent effect
on cell growth and differentiation, while displaying low
calcemic activity in vivo.

At present, the mode of action of the various synthetic
vitamin D analogs at the molecular level is not fully under-
stood. However, in our previous studies we successfully used
some of these analogs as molecular probes to examine how
the changes in 10,25(OH),Dj; structure would affect its target
tissue metabolism. It is now well established that
10,25(0OH),D; is metabolized in its various target tissues
via modifications of both the side chain and the A-ring. The
C-24 oxidation pathway, initiated by hydroxylation at C-24
is the major side chain modification pathway and is responsi-
ble for the conversion of 10,25(OH),D; into the final metab-
olite, calcitroic acid [8,9]. The C-3 epimerization pathway is
the minor A-ring modification pathway through which
10,25(OH),D; is metabolized into 1a,25-dihydroxy-3-epi-
vitamin D5 [10,25(OH),-3-epi-D5] [10-12]. For a comprehen-
sive understanding of the target tissue metabolism of
10,25(0OH),D5, the reader is referred to a recent review [13].
In our previous studies, we investigated the target tissue

U Abbreviations used: 10,25(0OH),D3, la, 25-dihydroxyvitamin Dy;
10,24(R),25(0OH);D;, 10,24(R),25-tryhydroxyvitamin D5; 10,25(0H),-24-
0x0-Dj, 10,25-dihydroxy-24-oxovitamin Dj; 10,23,(S)25(0OH);-24-0x0-D;,
10,,23(S),25-trihydroxy-24-oxovitamin Ds; 10,23(OH),-24,25,26,27-tetra-
nor Dy or C-23 alcohol, 1a,23-dihydroxy-24,25,26,27-tetranorvitamin Ds;
10,25(0OH),-3-epi-D;, 10,25-dihydroxy-3-epi-vitamin D;; HPLC, high per-
formance liquid chromatography; GC/MS, gas chromatography/mass
spectrometry; VDR, vitamin D receptor; hDBP, human D-binding
protein; VDRE, Vitamin D response element.
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Fig. 1. Chemical structures and UV spectra of 10,25(OH),D; and the two
nonsteroidal analogs SL 117 and WU 515.

metabolism differences between 10,25(0OH),D; and two
novel vitamin D analogs namely 10,25(OH),-16-ene-D; and
10,25(0OH),-20-epi-D;. The results of these studies indicated
that minor changes such as inclusion of 16-ene and 20-epi
modifications to 10,25(OH),D; structure affect its target tis-
sue metabolism significantly [14-16]. Now, with the availabil-
ity of D-ring analogs, we asked the question how a major
change in the structure of 10,25(0OH),D; such as the removal
of C-ring from its CD-ring skeleton would affect its target tis-
sue metabolism. To answer this question, we compared the
metabolic fate of two D-ring analogs (SL 117 and WU 515),
with that of 10,25(OH),D; in both isolated perfused rat kid-
ney and rat osteosarcoma cells (UMR 106). The results of
these studies are reported in the present paper.
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Table 1

Summary of the biological effects of D-ring analogs SL117 and WUS515 on (1) VDR and hDBP binding (2) HL-60 and MG-63 differentiation (3) MCF-7,
keratinocytes and peripheral blood mononuclear cell (PMBC) proliferation and (4) calcium levels in serum and urine of vitamin D replete normal mice

Compound Binding studies In vitro studies In vivo studies
VDR (%) DBP (%) HL-60 MG-63 MCF-7 Kerat PBMC s Ca in serum Ca in urine
(%) (%) (%) (%) (%) (mouse) (%) (mouse) (%)
10,25(0OH),D; 100 100 100 100 100 100 100 100 100
SL 117 80 10 85 30 85 90 80 0.3 2
WU 515 70 3 1000 1000 5000 3000 150 6 13

Antiproliferative activity was assessed by [*’H] thymidine incorporation. Prodifferentiating effects were determined on HL-60 cells by NBT reducing assay
and on MG-63 by osteocalcin measurements. Results are expressed as % activity (at 50% dose-response) as compared to 1a,25(OH),D5 (= 100% activity).
In vivo effects were tested on vitamin D replete normal NMRI mice by daily intraperitoneal injections for 7 consecutive days. Calcium levels were deter-
mined in urine and serum, and the dose-response curve for D-ring analogs was compared with that of 10,25(0OH),D; (= 100% activity). (Data summarized

from Ref. [7].)

Materials and methods
Vitamin D compounds

Crystalline 1a,25(OH),D; was synthesized at Hoffmann-La Roche,
Nutley, NY, USA. All the known natural metabolites of 10,25(OH),D5
which include 10,24(R),25-trihydroxyvitamin D; [10,24(R),25(0OH);D;],
la,25-dihydroxy-24-oxovitamin D3 [l10,25(0OH),-24-0x0-D;], 10,23(S),
25-trihydroxy-24-oxovitamin D3 [1a,23(S),25(0OH);-24-0x0-D3], and
l10,23-dihydroxy-24,25,26,27-tetranorvitamin Dj [10,23(OH),-24,25,26,27-
tetranor- Dy or C-23 alcohol], were biologically synthesized in the rat
kidney perfusion system as previously described [8,17]. The D-ring analogs
of 10,25(0OH),D; (SL 117 and WU 515) were synthesized at one of our
laboratories (Universiteit Gent, Gent, Belgium) [18].

Solvents

All solvents were from Burdick and Jackson Laboratories, Muskegan,
ML

High performance liquid chromatography (HPLC) and gas
chromatographylmass spectrometry (GCIMS)

HPLC analysis of the lipid extracts from the kidney perfusate and
from cells and media was performed with a Waters System Controller
(Millennium 32) equipped with a photodiode array detector (Model PDA
996) to monitor the UV absorbing material at 265 nm.

GC/MS analysis was performed using a Hewlett-Packard GC-MSD
system which is equipped with a 6890 GC, 5973 mass-selective detector
and 7683 autosampler (Hewlett-Packard, Wilmington, DE). Each vitamin
D compound was prepared as a 5-15ng/uL solution in a 1:1 mixture of
acetonitrile and derivatizing reagent (Power SIL Prep, Alltech Associates,
Deerfield, IL) and incubated at 70 °C for 15 min. 1-3 pL of each solution
containing the trimethylsilyl ether derivative was injected onto a DB-5MS
low-bleed capillary column (30 m x 0.25 mm x 0.25 pm film thickness)(J &
W Scientific, Folsom, CA). The amount of each analyte injected varied
slightly depending on MS signal response. UHP helium carrier gas was
used at a flow rate of 0.8 mL/min with a temperature program ranging
from 140-300°C (20°C/min ramp). Full-scan electron impact mass
spectra were acquired for each experiment.

Animals

The Animals Ethics and Care Committee of the Women and Infants
Hospital, Providence, RI approved the animal experiments performed in
this study. Male Sprague-Dawley rats (about 350 g) purchased from
Taconic Laboratories (Germantown, NY) were fed a regular rodent diet
sufficient in calcium, phosphorus and vitamin D. In our previous studies
we demonstrated that the increase in activity of the enzymes involved in
further metabolism of 10,25(OH),D; can be induced in kidneys by

pretreating rats with 10,25(OH),D; [17,19]. Therefore, in an analogous
fashion in this study the rats were given an intracardiac injection of 1 pg of
10,25(0H),D; in 50 pL of ethanol 6 h prior to isolation of the kidney from
the animal to increase the enzymatic activity required for further metabo-
lism of 10,25(OH),D; and the D-ring analogs SL 117 and WU 515.

Study of the metabolism of the D-ring analogs (SL 117 and WU
515) and 10,25(OH ) ,D; in rat kidney

The metabolism of the D-ring analogs, SL 117 and WU 515, was com-
pared to 10,25(OH),Dj5 in rat kidney using the isolated kidney perfusion
technique as described before in detail [8,17,19]. Each kidney was perfused
with 5 uM concentration of 1a,25(OH),D; or one of its analogs (SL 117
and WU 515) in 100 mL of perfusate and perfusions were continued for
8 h. The lipid extracts of the kidney perfusate samples were analyzed for
the various further metabolites of 10,25(OH),D; or its analogs (SL 117
and WU 515) using the technique of HPLC described later.

Control perfusions containing only perfusate and the Vitamin D com-
pounds were performed in the absence of a kidney. The control studies
indicated that the Vitamin D compounds did not undergo any change or
breakdown either during the 8h perfusion period or during the extraction
period.

Study of the metabolism of the D-ring analogs (SL 117 and WU
515) and 10,25(OH ) ,D; in UMR 106 cells

UMR 106 cells were maintained by McCoy’s culture media supple-
mented with a 10% fetal calf serum (FCS) and antibiotics (penicillin
100 IU/mL and streptomycin 100 pg/mL). Cell culture medium was
changed every 3-4 days. The cells were subcultured when approximately
80% confluent and were not subcultured beyond five passages. For the
metabolism studies, 3 x 10° cells were seeded in T150 tissue culture bottles
and grown to confluence. The incubations were carried out at 37°C in a
humidified atmosphere under 5% CO,. Confluent UMR 106 cells were
incubated with 1 M concentration of either 1a,25(OH),D; or its analogs
(SL 117 or WU 515) in 50 mL of media containing 10% FCS. The incuba-
tions were stopped after 24 h, with 10 mL of methanol. The lipid extracts
of both cells and media were analyzed for the various further metabolites
of 10,25(0OH),Dj; or its analogs (SL 117 and WU 515) using the technique
of HPLC described later.

Control incubations without cells containing only media and the Vita-
min D compounds were performed. The control studies indicated that the
Vitamin D compounds did not undergo any change or breakdown either
during the 24 h perfusion period or during the extraction period.

Lipid extraction
Lipid extraction from both kidney perfusate and cells and media was

performed according to the procedure of Bligh and Dyer [20] except that
methylene chloride was substituted for chloroform. Prior to the lipid
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extraction, the kidney perfusate samples and the UMR 106 cells with
media were spiked with 5 ug of 250HD;, which was used as an internal
standard. The recovery of the internal standard was used to assess the
extraction efficiencies of the various lipid-soluble vitamin D metabolites.

Isolation and purification of the metabolites of SL 117, WU 515 and
10,25(OH ),D; produced by the rat kidney and UMR 106 cells

Lipid extracts obtained from both kidney perfusate samples and cells
and media were separately subjected directly to HPLC using a Zorbax-SIL
column (9.4 x 250 mm) eluted with three different solvent mixtures at a
flow rate of 2mL/min. HPLC analysis of the lipid extracts was first con-
ducted using a solvent mixture consisting of 10% isopropanol in hexane
(HPLC system-I). Subsequently, a second solvent mixture consisting of 6%
isopropanol in methylene chloride (HPLC system-11) was used to obtain a
better resolution of the metabolites. Final purification of the metabolites
for mass spectrometric analysis was obtained using a Zorbax-SIL column
eluted with 15% isopropanol in hexane (HPLC system-III).

Sodium metaperiodate (NalO,) oxidation

A total of 1 pg of the test vitamin D compound was dissolved in 15 pL
of methanol and was allowed to react with 10 pL of 5% aqueous NalO,.
After 30 min at 25 °C, the reaction product was dried under nitrogen gas
and subjected to HPLC using a Zorbax-SIL column eluted with
hexane:isopropanol (90:10) at a flow rate of 2 mL/min.

Sodium borohydride (NaBH ) reduction

A total of 1 pg of the test vitamin D compound was dissolved in 50 pL
of ethanol containing 1 mg of NaBH,. After 30 min at 25 °C, the reaction
product was dried under nitrogen and dissolved in 2 mL of hexane:isopro-
panol mixture (96:4). The sample was filtered through a syringe fitted with
a Swinney filter holder containing a 0.45 um Teflon filter (Millipore) and
was concentrated under nitrogen to a volume of 100 pL. Then the sample
was subjected to HPLC using a Zorbax-SIL column eluted with
hexane:isopropanol (96:4) at a flow rate of 2 mL/min.

Results

Metabolites of 10,25( OH ) ,D; and the analogs SL 117 and
WU 515 produced by rat kidney

The HPLC profiles of the lipid extracts of the final
perfusate samples of three kidney perfusions were shown
in Fig.2. Rat kidneys were perfused with -either
10,25(OH),D; (panel A) or the analogs SL 117 (panel B)
or WU 515 (panel C). As reported previously,
10,25(OH),D; was metabolized in rat kidney into the
well known polar metabolites derived via the C-24 oxida-
tion pathway [8,9]. SL 117 with the same side chain as
that of 10,25(OH),D; was also metabolized into three
polar metabolites labeled A1, A2 and A3. We tentatively
assigned metabolites A3 and Al as C-24 OH SL 117 and
C-24 oxo SL 117, respectively, based on their chromato-
graphic mobility compared with the corresponding natu-
ral metabolites of the hormone 10,25(0OH),D;.
Metabolites A3 and Al were purified further using
HPLC systems I and III for their structure identification
by GC/MS described later. The minor metabolite A2 was
not identified in this study. Unlike SL 117, WU 515 with
altered side chain was not metabolized into polar metab-
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Fig. 2. The HPLC profiles of the lipid extracts of the final perfusate sam-
ples of three kidney perfusions using 10,25(OH),D; and its analogs (SL
117 and WU 515) as the substrates. Each kidney was perfused for 8 h with
SuM concentration of each substrate in 100mL of perfusate. Lipid
extract of final kidney perfusate (10mL) from each kidney perfusion
was subjected to HPLC analysis using a Zorbax-SIL column
(9.4mm x 250 mm) eluted with 10% isopropanol in hexane at a flow rate
of 2mL/min. The substrate and the metabolites of each vitamin D com-
pound were traced by their typical UV spectra shown in Fig. 1. Panel A:
HPLC profile of 10,25(OH),D; and its polar metabolites derived via the
C-24 oxidation pathway. The peak eluting before 10,25(OH),D5 is pre
10,25(0OH),Dj5. Panel B: HPLC profile of SL 117 and its polar metabolites
(peaks A1, A2, and A3). Panel C: HPLC profile of WU 515, which is not
metabolized into polar metabolites.. Metabolites A3 and Al were identi-
fied as C-24 OH SL 117 and C-24 oxo SL 117, respectively. The minor
metabolite A2 was not identified in this study.

olites. This finding indicates that WU 515 resists its
metabolism through C-24 oxidation pathway.

Identification of metabolites A3 and Al as C-24 OH SL 117
and C-24 oxo SL 117, respectively

The mass spectral characteristics of the trimethylsily-
lated metabolite A3 are shown in Fig. 3 Panel A. The
molecular ion was detected at m/z 694 indicating the
presence of an additional hydroxyl group when com-
pared to its parent, SL 117 (Fig. 5, panel B). Fragments at
m/z 604 and 514 represent sequential losses of one and
two trimethylsilylated hydroxyl groups. The loss of
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Fig. 3. Mass spectra of trimethylsilylated derivatives of metabolites of
analog SL117 (A3 and Al) produced by the isolated perfused rat kidney.
Panel A: Metabolite A3, GC retention time 16.34 min. Panel B: Metabo-
lite A1, GC retention time 16.13 min.

131 Da from the A-ring (m/z 563) and the detection of an
ion fragment at m/z 217, arising from A-ring cleavage,
denote the presence of intact hydroxyl groups at C-1 and
C-3 on the A-ring. The fragment ion at m/z 131 represent-
ing the cleavage across the C-24/25 bond on the sidechain
indicates the presence of intact C-25 hydroxyl group. All
these masses are consistent with those expected for the
C-24 hydroxylated metabolite of SL 117. Masses of m/z,
281, 355 and 429 are background peaks arising from col-
umn bleed. The metabolite A3 was converted into a less
polar metabolite when it was subjected to sodium perio-
date oxidation (data not shown). The susceptibility of
metabolite A3 to NalO, oxidation provided further evi-
dence that an additional hydroxyl group on the side
chain is vicinal to the original C-25 hydroxyl group of SL
117. Furthermore, the fragment at m/z 131 indicated that
metabolite A3 not only contains an intact C-25 hydroxyl
group but also that no hydroxylation has occurred on
either C-26 or C-27. Thus, based on HPLC retention and
MS fragmentation data, metabolite A3 was identified as
C-24 OH SL 117.

The mass spectral characteristics of the trimethylsily-
lated metabolite A1 shown in Fig. 3 Panel B are as follows:
mlz 620 [M]™, 530 [M-TMSOH]", 440 [M-2TMSOH]",
489 [M-131], 217 [A-ring fragment]*, and 131 [side chain
fragment]”. These masses are identical to the masses
expected for C-24 oxo SL 117. Sodium borohydride reduc-
tion of metabolite Al yielded a compound which comi-
grated with C-24 OH SL 117 on a straight phase HPLC
system (data not shown). Based on these findings, metabo-
lite A1 was identified as C-24 oxo SL 117.

Metabolites of 10,25(OH ) ,D; and the analogs SL 117 and
WU 515 produced by UMR 106 cells

Our studies comparing the metabolism of SL 117 and
WU 515 with that of 1¢,25(OH),Dj; in the isolated perfused
rat kidney indicated that SL 117, like 10,25(OH),D;, is
metabolized via the same C-24 oxidation pathway, while
WU 515 (with altered side chain) resists metabolism via this
pathway. However, it was not possible to obtain informa-
tion about the metabolism of these two analogs via C-3 epi-
merization as rat kidney does not express this pathway.
Therefore, the metabolism of SL 117 and WU 515 was also
examined in UMR 106 cells, which are known to express
both C-24 oxidation and C-3 epimerization pathways [10].

The HPLC profiles of the lipid extracts of media and the
cells of UMR 106 cells incubated for 24h with either
10,25(0H),D; (panel A), SL 117 (panel B) or WU 515
(panel C) are shown in Fig.4. As reported previously,
10,25(OH),D; was metabolized in UMR 106 cells not only
into the polar metabolites derived via the C-24 oxidation
pathway, but also into a less polar metabolite, 10,25(OH),-
3-epi-Dj3, derived via the C-3 epimerization pathway (Fig. 4,
panel A). SL 117, like 10,25(0OH),D; is also metabolized
into polar metabolite peaks B1, B2 and B3 but also into a
less polar metabolite peak X (Fig. 4, panel B). All of the
metabolites exhibited UV spectral characteristics identical
to that of SL 117 shown in Fig. 1. Metabolites B3 and Bl
were tentatively designated as C-24 OH SL 117 and C-24
oxo SL 117, respectively, based on chromatographic reten-
tion. Metabolites B3 and Bl were further purified using
HPLC systems II and III for their structure identification.
GC/MS analyses of metabolites B3 and Bl produced data
almost identical to those obtained from metabolites A3 (C-
24 OH SL 117) and A1 (C-24 oxo SL 117) produced by rat
kidney (data not shown). Therefore, metabolites B3 and Bl
were identified as C-24 OH SL 117 and C-24 oxo SL 117,
respectively. The minor metabolite B2 was not identified in
this study. The less polar metabolite X was also further
purified using HPLC systems II and III for its structure
identification. The analog WU 515 resisted its metabolism
via the C-24 oxidation pathway in UMR 106 cells like in rat
kidney and thus no polar metabolites were produced. On
the contrary, the same analog unlike in rat kidney is metab-
olized into a less polar peak Y (Fig. 4, panel C).

Identification of metabolites X and Y as the C-3 epimers of
SL 117 and WU 515, respectively

Unlike in rat kidney, the metabolic profiles obtained in
UMR 106 cells for both SL 117 and WU 515 did, however,
show that both compounds were converted into less polar
metabolites X (Fig. 4, panel B) and Y (Fig. 4, panel C).
Metabolites X and Y were further purified using HPLC
systems II and III for GC/MS analysis. Fig. 5 shows the
mass spectrum of metabolite X (panel A) and standard SL
117 (panel B). While the mass spectrum of the metabolite
yielded the same general ion fragment profile, there were
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Fig. 4. The HPLC profiles of the lipid extracts of media and the cells of
UMR 106 cells incubated for 24h with 1 uM concentration of either
10,25(0OH),D; or the analogs (SL 117 or WU 515). HPLC analysis of the
lipid extracts of both cells and media was performed using the same chro-
matographic conditions described in the legend to Fig. 2. The substrate
and the metabolites of each vitamin D compound were traced by their
typical UV spectra shown in Fig. 1. Panel A: HPLC profile of the sub-
strate 10,25(OH),D5; the less polar metabolite 10,25(OH),-3-epi-Ds,
derived via the C-3 epimerization pathway and the polar metabolites
derived via the C-24 oxidation pathway. Panel B: HPLC profile of the
substrate SL 117 and its less polar metabolite (Peak X) and polar metabo-
lites (peaks B1, B2 and B3). Panel C: HPLC profile of the substrate WU
515 and its less polar metabolite (Peak Y) Metabolites B3 and Bl were
identified as C-24 OH SL 117 and C-24 oxo SL 117, respectively. The
minor metabolite B2 was not identified in this study. Metabolites X and Y
were identified as putative C-3 epimers of SL 117 and WU 515,
respectively.

significant differences in the relative intensity of certain
fragments. Most notable differences were observed in the
relative intensities of certain fragments such as m/z 475 [M-
131]", m/z 490 [M-TMSOH-CH;-H]" and m/z 217 [ion
fragment comprised of the 3- and 1-trimethylsilyloxy
groups along with the A-ring carbons 1,2 and 3.] Similar
behavior has been observed by comparing mass spectral
characteristics of other vitamin D analogs with their corre-
sponding synthetic C-3 epimers (unpublished observa-
tions). In addition, the GC retention time of metabolite X
(15.6 min) is significantly different when compared to that
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Fig. 5. Mass spectra of trimethylsilyl derivatives of the analog SL 117 and
its metabolite X produced by UMR 106 cells. Panel A: less polar metabo-
lite X (GC retention time 15.60 min). Panel B: Synthetic standard SL 117
(GC retention time 15.23 min).
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Fig. 6. Mass spectra of trimethylsilyl derivatives of the analog WU 515
and its metabolite Y produced by UMR 106 cells. Panel A: less polar
metabolite Y (GC retention time 14.06 min). Panel B: Synthetic standard
WU 515 (GC retention time 13.86 min).

of its parent (15.2min). Therefore, metabolite X was
assigned a putative structure of 3-epi-SL 117 based on
retention behavior and mass spectral characteristics.

The mass spectra of WU 515 metabolite Y (panel A) and
standard WU 515 (panel B) are shown in Fig. 6. These mass
spectra, in combination with GC retention times, illustrated
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a similar phenomenon as seen with metabolite X. There-
fore, metabolite Y was assigned a putative structure of
3-epi-WU 515 based on retention behavior and mass spec-
tral characteristics.

Discussion

Several recent studies have indicated that certain minor
structural modifications of the side chain of 10,25(0OH),D;
can alter significantly its metabolism via both the C-24 oxi-
dation and C-3 epimerization pathways and this in turn has
a significant impact on its biological activity [21-26]. For
example, we compared the metabolism of 1a,25(0OH),D;
with that of a simple analog, 10,25(OH),-16-ene-D5 in an
isolated perfused rat kidney and found that both com-
pounds are metabolized through the same C-24 oxidation
pathway, forming their respective 24-hydroxy and 24-oxo
metabolites. As expected 10,25(0OH),-24-0x0-D;, the
metabolite of 10,25(0OH),D;, is further metabolized into
10,23(S),25(0OH);-24-0x0-D; at a rapid rate. On the con-
trary, 10,25(OH),-24-0x0-16-ene-D;, the metabolite of the
analog, resisted C-23 hydroxylation and as a result, 1o,
25(0OH),-24-0x0-16-ene-D; accumulates. Thus, we reported
that a simple modification, such as insertion of a double
bond between C-16 and C-17 in the D-ring of
10,25(OH),D; produces a partial block in its metabolism
via C-24 oxidation pathway [14,15]. Another analog,
10,25(OH),-20-epi-Dj, differs from 10,25(OH),D; only by a
simple modification of a change in stereochemistry of the
methyl group at C-20 to an unnatural orientation. Like in
the case of 10,25(0OH),-16-ene-D5 a partial block in the
metabolism of 10,25(OH),-20-epi-D; via the C-24 oxida-
tion pathway was also noted [16,27]. Furthermore, the sta-
ble 24-oxo metabolites of both 16-ene and 20-epi analogs
were found to be almost as active as their corresponding
parent analog in inhibiting proliferation and inducing
differentiation of cancer cells, transactivating a VDRE
reporter construct in vitro and in exerting immunosuppres-
sive activity inwvivo without causing hypercalcemia
[15,16,28,29]. Thus, the incorporation of either 16-ene or 20-
epi modification into 1a,25(OH),D; molecule decreases the
rate of its further metabolism and allows the accumulation
of the corresponding bioactive C-24 oxo metabolite. This
phenomenon of altered pattern of metabolism in case of
both 16-ene and 20-epi analogs has been proposed as one
of the possible explanations for their unique biological
actions. Furthermore, we also reported that addition of a
23-yne modification to 10,25(0OH),-16-ene-D; (10,25(OH),-
16-ene-23-yne-D5) completely prevents its metabolism via
the C-24 oxidation pathway and as a result the activity of
the analog was enhanced by several fold [21] Interestingly,
further addition of a 20-epi modification to 10,25(OH),-16-
ene-23-yne-D; analog enhanced its rate of C-3 epimerization
by approximately 10-fold [30]. Thus, all the aforementioned
studies indicate that minor structural modifications of the
sidechain of 10,25(OH),D; can produce a significant
change not only in its biological activity but also in its

target tissue metabolism through both C-24 oxidation and
C-3 epimerization pathways.

In the present study, unlike our previous studies, we
investigated how a major modification in 10,25(0OH),D,
structure such as removal of the C-ring would alter its
metabolism. We selected two novel D-ring analogs (SL 117
and WU 515) which lack the C-ring and studied their
metabolism in both rat kidney and UMR 106 cells. Our
results indicate that SL 117with the same side chain as that
of 10,25(0OH),D; is metabolized into C-24 OH SL 117 and
C-24 oxo SL 117 and these metabolites were identified by
HPLC retention characteristics and mass spectrometry.
This finding indicates that SL 117 is metabolized like
10,,25(0OH),D; through the same C-24 oxidation pathway.
On the contrary, the analog WU 515 with altered sidechain
structure containing 23-yne modification combined with
hexafluorination at C-26 and C-27, is not metabolized into
side chain modified polar metabolites. This finding indi-
cates that WU 515 resists its metabolism through the C-24
oxidation pathway. It was also found that both SL 117 and
WU 515 were converted into less polar metabolites when
incubated in UMR 106 cells, which are known to express
the C-3-epimerization pathway. These metabolites also dis-
played GC and MS characteristics consistent with A-ring
epimerization (identical mass, different retention and frag-
mentation pattern) and were putatively assigned as C-3 epi-
mers of SL 117 and WU 515. Thus, we report that removal
of the C-ring from 10,25(OH),D; does not alter its target
tissue metabolism significantly.

Similar to our observations obtained from the metabo-
lism studies, the biological activity studies of SL 117 and
WU 515 indicated that the C-ring in the CD-ring skeleton
of 10,25(OH),D; is not essential to generate vitamin D-like
actions [7] Although SL 117 and WU 515 bind to the VDR
with almost the same affinity (Table 1), SL 117 is equipo-
tent to 10,25(0OH),D; while WU 515 is several fold more
potent than 10,25(OH),D; in modulating cell growth and
differentiation and transactivating a VDRE reporter con-
struct in vitro [7]. Also WU 515 was more potent than
10,25(OH),D; in protecting the VDR against proteolytic
degradation [7]. Thus, the absence of significant correlation
between VDR affinity and VDR-mediated transcriptional
activities of SL 117 and WU 515 can be explained in part
by the metabolic stability of WU 515 when compared to SL
117.

In summary, our results indicate that (1) SL 117, like
10,,25(0OH), D5, is metabolized through the same C-24 oxi-
dation pathway in both rat kidney and UMR 106 cells. (2)
WU 515, unlike SL 117, is not metabolized through C-24
oxidation pathway. (3) In UMR 106 cells, both SL 117 and
WU 515 are metabolized into less polar putative C-3
epimers which are probably produced through the C-3
epimerization pathway known to exist in these cells. Thus,
we report that the removal of the C-ring from the CD-ring
skeleton of 10,25(OH),D; does not alter its target tissue
metabolism significantly. Finally, by putting together our
present and the previously published observations (Table 1),
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it can be concluded that for optimal interaction of
10,25(0OH),D5 and the analogs (SL 117 and WU 515) with
VDR and the enzymes involved in their target tissue metab-
olism does not require a full CD-ring structure. On the con-
trary, the interaction of 10,25(OH),D; and its analogs with
DBP is significantly impaired when the CD-ring structure is
disrupted.
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