673,826 research outputs found
Processing of emotional expression in subliminal and low-visibility images
This thesis investigated the processing of emotional stimuli by the visual system, and how the processing of emotions interacts with visual awareness. Emotions have been given ‘special’ status by some previous research, with evidence that the processing of emotions may be relatively independent of striate cortex, and less affected by disruption to awareness than processing of emotionally neutral images. Yet the extent to which emotions are ‘special’ remains questionable. This thesis focused on the processing of emotional stimuli when activity in V1 was disrupted using transcranial magnetic stimulation (TMS), and whether emotional properties of stimuli can be reliably discriminated, or affect subsequent responses, when visibility is low.
Two of the experiments reported in this thesis disrupted activity in V1 using TMS, Experiment 1 with single pulses in an online design, and Experiment 2 with theta burst stimulation in an offline design. Experiment 1 found that a single pulse of TMS 70-130 ms following a presentation of a body posture image disrupted processing of neutral but not emotional postures in an area of the visual field that corresponded to the disruption. Experiment 2 did not find any convincing evidence of disruption to processing of neutral or emotional faces. From Experiment 1 it would appear that emotional body posture images were relatively unaffected by TMS, and appeared to be robust to disruption to V1. Experiment 2 did not add to this as there was no evidence of disruption in any condition.
Experiments 3 and 4 used visual masking to disrupt awareness of emotional and neutral faces. Both experiments used a varying interval between the face and the mask stimuli to systematically vary the visibility of the faces. Overall, the shortest SOA produced the lowest level of visibility, and this level of visibility was arguably outside awareness. In Experiment 3, participants’ ability to discriminate properties of emotional faces under low visibility conditions was greater than their ability to discriminate the orientation of the face. This was despite the orientation discrimination being much easier at higher levels of visibility. Experiment 4 used a gender discrimination task, with emotion providing a redundant cue to the decision (present half of the time). Despite showing a strong linear masking function for the neutral faces, there was no evidence of any emotion advantage. Overall, Experiment 3 gave some evidence of an emotion advantage under low visibility conditions, but this effect was fairly small and not replicated in Experiment 4.
Finally, Experiments 5-8 used low visibility emotional faces to prime responses to subsequent emotional faces (Experiments 5 and 6) or words (Experiments 7 and 8). In Experiments 5, 7 and 8 there was some evidence of emotional priming effects, although these effects varied considerably across the different designs used. There was evidence for meaningful processing of the emotional prime faces, but this processing only led to small and variable effects on subsequent responses.
In summary, this thesis found some evidence that the processing of emotional stimuli was relatively robust to disruption in V1 with TMS. Attempts to find evidence for robust processing of emotional stimuli when disrupted with backwards masking was less successful, with at best mixed results from discrimination tasks and priming experiments. Whether emotional stimuli are processed by a separate route(s) in the brain is still very much open to debate, but the findings of this thesis offers small and inconsistent evidence for a brain network for processing emotions that is relatively independent of V1 and visual awareness. The network and nature of brain structures involved in the processing of subliminal and low visibility processing of emotions remains somewhat elusive.ESR
Explicit recognition of emotional facial expressions is shaped by expertise: evidence from professional actors
Can reading others' emotional states be shaped by expertise? We assessed processing of emotional facial expressions in professional actors trained either to voluntary activate mimicry to reproduce character's emotions (as foreseen by the “Mimic Method”), or to infer others' inner states from reading the emotional context (as foreseen by “Stanislavski Method”). In explicit recognition of facial expressions (Experiment 1), the two experimental groups differed from each other and from a control group with no acting experience: the Mimic group was more accurate, whereas the Stanislavski group was slower. Neither acting experience, instead, influenced implicit processing of emotional faces (Experiment 2). We argue that expertise can selectively influence explicit recognition of others' facial expressions, depending on the kind of “emotional expertise”
Acute tryptophan depletion attenuates conscious appraisal of social emotional signals in healthy female volunteers
Rationale: Acute tryptophan depletion (ATD) decreases levels of central serotonin. ATD thus enables the cognitive effects of serotonin to be studied, with implications for the understanding of psychiatric conditions, including depression.
Objective: To determine the role of serotonin in conscious (explicit) and unconscious/incidental processing of emotional information.
Materials and methods: A randomized, double-blind, cross-over design was used with 15 healthy female participants. Subjective mood was recorded at baseline and after 4 h, when participants performed an explicit emotional face processing task, and a task eliciting unconscious processing of emotionally aversive and neutral images presented subliminally using backward masking.
Results: ATD was associated with a robust reduction in plasma tryptophan at 4 h but had no effect on mood or autonomic physiology. ATD was associated with significantly lower attractiveness ratings for happy faces and attenuation of intensity/arousal ratings of angry faces. ATD also reduced overall reaction times on the unconscious perception task, but there was no interaction with emotional content of masked stimuli. ATD did not affect breakthrough perception (accuracy in identification) of masked images.
Conclusions: ATD attenuates the attractiveness of positive faces and the negative intensity of threatening faces, suggesting that serotonin contributes specifically to the appraisal of the social salience of both positive and negative salient social emotional cues. We found no evidence that serotonin affects unconscious processing of negative emotional stimuli. These novel findings implicate serotonin in conscious aspects of active social and behavioural engagement and extend knowledge regarding the effects of ATD on emotional perception
A model of emotional influence on memory processing.
To survive in a complex environment, agents must be able to encode information about the utility value of the objects they meet. We propose a neuroscience-based model aiming to explain how a new memory is associated to an emotional response. The same theoretical framework also explains the effects of emotion on memory recall. The originality of our approach is to postulate the presence of two central processing units (CPUs): one computing only emotional information, and the other mainly concerned with cognitive processing. The emotional CPU, which is phylogenetically older, is assumed to modulate the cognitive CPU, which is more recent. The article first deals with the cognitive part of the model by highlighting the set of processes underlying memory recognition and storage. Then, building on this theoretical background, the emotional part highlights how the emotional response is computed and stored. The last section describes the interplay between the cognitive and emotional systems
Processing advantage for emotional words in bilingual speakers
Effects of emotion on word processing are well established in monolingual speakers. However, studies that have assessed whether affective features of words undergo the same processing in a native and non-native language have provided mixed results: studies that have found differences between L1 and L2 processing, attributed it to the fact that a second language (L2) learned late in life would not be processed affectively, because affective associations are established during childhood. Other studies suggest that adult learners show similar effects of emotional features in L1 and L2. Differences in affective processing of L2 words can be linked to age and context of learning, proficiency, language dominance, and degree of similarity between the L2 and the L1. Here, in a lexical decision task on tightly matched negative, positive and neutral words, highly proficient English speakers from typologically different L1 showed the same facilitation in processing emotionally valenced words as native English speakers, regardless of their L1, the age of English acquisition or the frequency and context of English use
Emotional modulation of visual cortex activity: A functional nearinfrared spectroscopy study
Functional neuroimaging and electroencephalography reveal emotional effects in early visual cortex.
Here, we used fNIRS to examine haemodynamic responses evoked by neutral, positive and negative emotional pictures, matched for brightness, contrast, hue, saturation, spatial frequency and entropy.
Emotion content modulated amplitude and latency of oxy-, deoxy- and total haemoglobin response peaks, and induced peripheral autonomic reactions. The processing of positive and negative pictures enhanced haemodynamic response amplitude, and this effect was paralleled by blood pressure changes. The processing of positive pictures was reflected in reduced haemodynamic response peak latency. Together these data suggest early visual cortex holds amplitude-dependent representation of stimulus salience and latency-dependent information regarding stimulus valence, providing new insight into affective interaction with sensory processing
Attention modulates the processing of emotional expression triggered by foveal faces
To investigate whether the processing of emotional expression for faces presented within foveal vision is modulated by spatial attention, event-related potentials (ERPs) were recorded in response to stimulus arrays containing one fearful or neutral face at fixation, which was flanked by a pair of peripheral bilateral lines. When attention was focused on the central face, an enhanced positivity was elicited by fearful as compared to neutral faces. This effect started at 160 ms post-stimulus, and remained present for the remainder of the 700 ms analysis interval. When attention was directed away from the face towards the line pair, the initial phase of this emotional positivity remained present, but emotional expression effects beyond 220 ms post-stimulus were completely eliminated. These results demonstrate that when faces are presented foveally, the initial rapid stage of emotional expression processing is unaffected by attention. In contrast, attentional task instructions are effective in inhibiting later, more controlled stages of expression analysis
Recommended from our members
Sensory sensitivity as a link between concussive traumatic brain injury and PTSD.
Traumatic brain injury (TBI) is one of the most common injuries to military personnel, a population often exposed to stressful stimuli and emotional trauma. Changes in sensory processing after TBI might contribute to TBI-post traumatic stress disorder (PTSD) comorbidity. Combining an animal model of TBI with an animal model of emotional trauma, we reveal an interaction between auditory sensitivity after TBI and fear conditioning where 75 dB white noise alone evokes a phonophobia-like phenotype and when paired with footshocks, fear is robustly enhanced. TBI reduced neuronal activity in the hippocampus but increased activity in the ipsilateral lateral amygdala (LA) when exposed to white noise. The white noise effect in LA was driven by increased activity in neurons projecting from ipsilateral auditory thalamus (medial geniculate nucleus). These data suggest that altered sensory processing within subcortical sensory-emotional circuitry after TBI results in neutral stimuli adopting aversive properties with a corresponding impact on facilitating trauma memories and may contribute to TBI-PTSD comorbidity
Emotion based attentional priority for storage in visual short-term memory
A plethora of research demonstrates that the processing of emotional faces is prioritised over non-emotive stimuli when cognitive resources are limited (this is known as ‘emotional superiority’). However, there is debate as to whether competition for processing resources results in emotional superiority per se, or more specifically, threat superiority. Therefore, to investigate prioritisation of emotional stimuli for storage in visual short-term memory (VSTM), we devised an original VSTM report procedure using schematic (angry, happy, neutral) faces in which processing competition was manipulated. In Experiment 1, display exposure time was manipulated to create competition between stimuli. Participants (n = 20) had to recall a probed stimulus from a set size of four under high (150 ms array exposure duration) and low (400 ms array exposure duration) perceptual processing competition. For the high competition condition (i.e. 150 ms exposure), results revealed an emotional superiority effect per se. In Experiment 2 (n = 20), we increased competition by manipulating set size (three versus five stimuli), whilst maintaining a constrained array exposure duration of 150 ms. Here, for the five-stimulus set size (i.e. maximal competition) only threat superiority emerged. These findings demonstrate attentional prioritisation for storage in VSTM for emotional faces. We argue that task demands modulated the availability of processing resources and consequently the relative magnitude of the emotional/threat superiority effect, with only threatening stimuli prioritised for storage in VSTM under more demanding processing conditions. Our results are discussed in light of models and theories of visual selection, and not only combine the two strands of research (i.e. visual selection and emotion), but highlight a critical factor in the processing of emotional stimuli is availability of processing resources, which is further constrained by task demands
- …
