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Abstract: Studies from the past three decades have demonstrated that there is cerebellar involvement
in the emotional domain. Emotional processing in humans requires both unconscious and conscious
mechanisms. A significant amount of evidence indicates that the cerebellum is one of the cerebral
structures that subserve emotional processing, although conflicting data has been reported on its
function in unconscious and conscious mechanisms. This review discusses the available clinical,
neuroimaging, and neurophysiological data on this issue. We also propose a model in which the
cerebellum acts as a mediator between the internal state and external environment for the unconscious
and conscious levels of emotional processing.
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1. Introduction

Emotional alterations have long been recognized in patients affected by cerebellar pathology, but
have received little attention [1–3].

In 1998, the characterization of ‘cerebellar cognitive affective syndrome’ (CCAS) by Schmahmann
and Sherman [4] extended the function of the cerebellum to the cognitive and emotional domains,
demonstrating that these alterations are unrelated to cerebellar motor deficits [4–7].

There has been considerable progress in cerebellar research over the past decade and an
increasing number of studies have reported the function of the cerebellum in sensory and perceptual
mechanisms [8–11] and in components of the motor hierarchy, which are separate from mere motor
control [12,13].

Moreover, many groups have provided evidence of emotional and autonomic impairments in
patients with cerebellar pathologies [14–16], with several neuroimaging functional studies having also
demonstrated cerebellar activation in emotional tasks [17–20].

The link between the cerebellum and the emotional domain is also supported by findings of
structural and functional cerebellar abnormalities in pathologies that are characterized by emotional
disorders, such as schizophrenia, autism, and mood disorders [16,21–24].
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Cerebellar function in emotions must be viewed with regards to its anatomical and functional
connections with the neural circuits that subserve various emotional domains [19,25–27]. It has been
proposed that two neural systems are associated with emotional processing: one operating on an
implicit level and another on an explicit level [28–32]. Whereas the cerebellum has been associated with
information processing on an implicit level in other functional domains [33–35], it has been described
as being involved in the implicit and explicit components of the emotional domain [36,37].

In cognitive science, the distinction between implicit and explicit processes corresponds to
that between unconscious and conscious processes [38]. Emotional phenomena that are executed
without conscious processing and occur automatically—such as peripheral physiological arousal—are
considered to be implicit, whereas all emotional experiences that require processing at higher levels
and evoke conscious feelings are defined as explicit [28,32].

Thus, according to this theoretical framework, the terms unconscious and implicit are
synonymous, as are conscious and explicit in this report.

Despite the copious data on the cerebellum and emotional processes [39], the cerebellar
involvement in unconscious and conscious components of emotions is still unclear.

In this article, we review the available clinical, neuroimaging, and neurophysiological data, to
better clarify cerebellar function in these components of emotional processing.

This approach will increase our understanding of the function of the ‘emotional cerebellum’ in
addition to providing insights into cerebellar involvement in behavioral control and in neuropsychiatric
and mood disorders.

The following points will be highlighted:

• Emotional processing implies the existence of unconscious and conscious components.
• The cerebellum is connected to cerebral structures that are involved in unconscious and conscious

emotional processing.
• In the unconscious component of emotions, cerebellar involvement is supported by its influence

in modulating autonomic reactions, the automatic component of emotional learning, and implicit
processing of facial expressions.

• In the conscious component of emotions, the involvement of the cerebellum is supported by its
influence on the emotional content of fear conditioning, conscious processing of emotional facial
expression, the ability to recognize negative emotions, and self-perception of negative emotions.

• In the emotional domain, measuring cerebellar function with regards to state estimation and its
ability to process and predict sequential events allows us to compare internal and external events
on the unconscious and conscious levels.

2. Emotional Unconscious and Conscious Circuits

It is generally recognized that emotional behaviors imply the existence of unconscious and
conscious mechanisms [28,32,40–42]. These components can be defined separately using concepts and
neuroanatomy, although they should be considered on the same continuum that subtends emotional
awareness [32].

The unconscious process comprises the sensory and motor components of an emotional response
that precedes an emotional feeling state. In comparison, the conscious process includes the bodily
states on the periphery of awareness (background feelings), the attention to one’s subjective emotional
state (focal attention to feelings) and thoughts about the contents of conscious emotional experience
(reflective awareness) [42]. The two systems share most neuroanatomical substrates, but additional
networks are involved in conscious processing [32,41].

Among the various theoretical models of the neural substrates of emotional processing, it has been
proposed that emotional processing arises in subcortical networks and then influences cortical activity.
Automatic and unconscious emotional processing is mediated by the amygdala, pulvinar, and superior
colliculus [43]. These structures process basic emotional stimuli to orient and initiate the physiological
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arousal that characterizes emotions [44–46]. Other structures that are involved in the processing of
unconscious emotional information include the hypothalamus, basal ganglia, brainstem nuclei, and the
ascending neurotransmitter systems [32]. The cortico-pulvinar-cortical pathway has been suggested to
link fast subcortical processing and the cortical structures that participate in higher-order conscious
processing of emotions [40]. The pulvinar is connected to the extrastriate cortex (occipital cortex),
inferior temporal cortex, and temporo-occipital area [47]. It is also associated with the insula [48],
posterior parietal cortex [49], medial frontal cortex [49,50], superior temporal gyrus [51], and cingulate
gyrus [50]. Most of these structures are involved in conscious processing of emotions and are part of
the well-known default-mode network (DMN) [52], which has been linked to cognitive-emotional
integration [53], emotional regulation [54], and emotional valence identification [55].

The neuronal networks between subcortical and cortical areas are bi-directional, indicating that
bottom-up and top-down processes must be considered: i.e., that conscious processing of emotional
information can alter the operation of subcortical structures and vice versa [32].

The cerebellum is strongly connected to cerebral structures that are involved in unconscious and
conscious emotional components: the reticular system (arousal), hypothalamus (autonomic function
and emotional expression), limbic structures (emotional experience and expression), and cortical
association areas (cognitive processing of emotions) [56]. In particular, it receives afferent nerves
from the medial mammillary bodies [57,58] and multi-modal deep layers of the superior colliculus in
addition to being connected bi-directionally to the hypothalamus [59] and the brainstem areas (ventral
tegmental area, periaqueductal gray, and locus ceruleus) that are related to the limbic and paralimbic
regions [60]. The cerebellum receives information from the paralimbic cortices in the cingulate
gyrus [61] via their projections to the pontine nuclei [62,63]. The caudal inferior parietal lobule,
multi-modal portions of the superior temporal gyrus, and posterior parahippocampus contribute
to the cortico–pontine projections through their connections with paralimbic structures [64,65].
Moreover, the cerebellum makes reciprocal connections with the prefrontal cortex [26]. Consistent with
neuroanatomical findings, functional magnetic resonance imaging (fMRI) studies have demonstrated
functional coherence between the cerebellum; the cerebral areas that mediate the processing of
emotional information, such as the amygdala, hippocampus, hypothalamus, insula and anterior
cingulate cortex; and cortical associative areas [27,66–68].

In the following paragraphs, we will present data that support the hypothesis of cerebellar
involvement in the unconscious and conscious components of emotional processing (summarized in
Table 1).

Table 1. Clinical, neuroimaging, and neurophysiological studies reporting cerebellar involvement in
emotional domains.

Study Subjects Task Emotional Data Unconscious/
Conscious

Clinical data

Annoni et al.,
2003 [14] n = 1 left cb stroke - Clinical observation

- Skin conductance

Emotional flattening and
impaired autonomic reactivity
to negative reinforcement

Unconscious

Adamaszek et al.,
2014 [69]

n = 15 with cb ischemic
lesion - Tübingen affect battery Impaired recognition of

emotional facial expression Conscious

Clausi et al.,
2012 [70]

n = 10 cb with dp n = 12
with major depression
n = 15 cb with no dp

- SCL-90
- POMS
- HDS
- Self-mood monitoring

Inability to evaluate the own
depressive mood Conscious

Clausi et al.,
2015 [71]

n = 15 with cb atrophy or
focal cb damage

- Gambling task
- Self-rating of regret

Impaired ability to recognize
negative feelings of regret Conscious

D’Agata et al.,
2011 [72] n = 20 with cb atrophy - Ekman 60 faces test Impairment in social emotions Conscious

Garrad et al.,
2008 [73]

n = 15 with cb atrophy
(SCA3/SCA6)

- Emotion attribution
- Social situations
- ToM task

Impairment in ToM Conscious
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Table 1. Cont.

Study Subjects Task Emotional Data Unconscious/
Conscious

Clinical data

Maschke et al.,
2000 [74]

n = 10 with cb focal
lesion

- Fear-conditioned potentiation
paradigm
- Skin conductance

Impaired blink reflex and
reduced skin conductance
response only in patients with
vermis lesion

Unconscious

Maschke et al.,
2002 [75]

n = 5 with cb surgical
lesions

- Fear conditioning
- Skin conductance

Altered heart rate and skin
conductance response Unconscious

Parente et al.,
2013 [76] n = 1 with cb atrophy

- ToM (Faux pas task, strange
stories, reading the mind in the
eyes test)
- Social situation task
- Emotion attribution task

Impairment in ToM Conscious

Sokolovsky et al.,
2010 [77]

n = 8 with cb atrophy
(SCA1/SCA2/SCA7)

- Emotion attribution task
- ToM task Impairment in social cognition Conscious

Neuroimaging
data

Critchley et al.,
2000 [78] (PET) n = 6 healthy

- Isometric exercise
- Mental arithmetic stressor tasks
- Mean arterial blood pressure
(MAP)
- Heart rate

In both exercise and mental
stress tasks, increased rCBF in
cb vermis, right anterior
cingulate and right insula
covaried with MAP

Unconscious

Kattoor et al.,
2013 [79] (fMRI) n = 30 healthy

- Fear conditioning
- Different learning phases:
acquisition, extinction,
reinstatement.

Activation of posterolateral cb
areas (Crus I, Crus II, and
VIIb) and dentate nucleus
during acquisition; activation
of posterolateral cb areas and
the vermis during extinction

Unconscious
and

conscious

Ploghaus et al.,
1999 [80] (fMRI) n = 12 healthy

- Sequence of thermal
stimulation (painful hot or
non-painful warm)

Activation of anterior vermis
for painful stimuli; activation
of posterior regions during the
anticipation phase of pain

Unconscious
and

conscious

Schraa-Tam et al.,
2012 [81] (fMRI) n = 20 healthy

- Observation and imitation of
facial emotions images
(positive/negative/neutral)

Activation of crus II for
positive emotional faces;
activation of hemispheres
(lobules VI and VIIa) and
vermis (VIII and IX) for
negative emotional faces

Conscious

Scheuerecker
et al., 2007 [36]
(fMRI)

n = 12 healthy
- Implicit and explicit emotional
paradigm using emotional faces
(sad/angry)

Cerebellar activation only for
explicit emotional recognition Conscious

Singer et al.,
2004 [82] (fMRI) n = 16 healthy couples - Pain stimulation

- Pain empathy

Activation of the lateral
cerebellum for feeling and
empathy of pain

Conscious

Utz et al.,
2015 [83] (fMRI) n = 32 healthy - Fear conditioning

- Skin conductance

Activation of the anterior
vermis during the
extinction phase

Unconscious

Neurophysio
logical data

Adamaszek et al.,
2013 [84] (ERPs) n = 1 with right cb stroke

- IAPS pictures (emotional
arousing pictures, with or
without competing attentional
tasks)

Impaired visual attention to
emotional cues Conscious

Adamaszek et al.,
2015 [85] (ERPs)

n = 8 with ischemic cb
lesion

- Karolinska directed emotional
faces database

Impaired recognition of
emotional facial expression Conscious

Schutter et al.,
2009 [37] rTMS
(medial
cerebellum)

n = 15 healthy

- 20 Hz rTMS
- Masked emotional faces task
(happy/fearful/ neutral)
- Affect scales
(positive/negative)

Significant enhancement of
the masked emotional
responses to happy facial
expressions.

Unconscious

Ferrucci et al.,
2012 [86] tDCS
(vermis)

n = 21 healthy
- Anodal/cathodal tDCS
- Facial emotion recognition task
- VAS for mood

Significant enhancement of
the processing of negative
facial expressions

Conscious

Legend: cb = cerebellar; dp = depressive symptoms; SCL-90-R = Symptom Check List-90-Revised; POMS = Profile
of Mood State; HDS = Hamilton Depression Scale; SCA = Spino-cerebellar Ataxia; ToM = Theory of Mind;
PET = Positron Emission Tomography; fMRI = functional Magnetic Resonance Imaging; VAS = visual analogue
scale; ERPs = event-related potentials; IAPS = International Affective Picture System; rTMS = repetitive Transcranial
Magnetic Stimulation; tDCS = transcranial Direct Current Stimulation.
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3. Cerebellum and Emotional Processing

3.1. Cerebellar Involvement in the Unconscious Component of Emotions

Cerebellar function in emotional responses at the unconscious level is supported by its influence
on the modulation of autonomic reactions and the automatic components of emotional learning.

Based on clinical observations in patients affected by cerebellar damage, there is a lowered
skin conduction response to negative stimuli [14] and an impaired blink reflex to fear stimuli [74].
Reports of impaired responsiveness of arterial blood pressure to aversive stimuli in animals [87]
and a less extensive increase in heart rate during fear conditioning tasks in subjects with vermal
lesions [75] indicate that the cerebellum is also involved in the autonomic neural pathways that
subserve the cardiovascular system in emotion regulation [87–89]. Furthermore, fMRI studies have
implicated that the cerebellar vermis is involved in autonomic responses that are associated with fear
conditioning [78–80,83].

Fear is a crucial emotion and the capacity to develop fear-related memories has an important
evolutionary advantage. The regulation of fear and fear memories consists of motor/autonomic
components (changes in blood pressure and heart rate, dilation of pupils), endocrine, behavioral
responses (freezing behavior, potentiated startle reflex) [90], and the affective component. It has been
proposed that the cerebellar vermis mediates the conditioning of fear-related changes in autonomic
functions, even in the absence of contingency awareness [90–92]. The central autonomic nuclei in
the brainstem and cerebellum control the sympathetic and parasympathetic axes of the autonomic
nervous system, allowing for the production of integrated somatic response patterns that are necessary
for the metabolic support of emotional behavior [78].

The cerebellum is an important component in the central autonomic network [93], because the
vermis is connected to the brainstem (catecholamine neurons) and hypothalamus [60].

Furthermore, the vermis is connected with limbic areas—such as the amygdala, hippocampus [90],
periaqueductal gray [94,95], and sensory cortices [96,97]—which function in emotional learning during
fear conditioning and generate the appropriate emotional behavior patterns [94,95].

Taking into account these connections, the vermis can be viewed as the interface between the
sensory stimuli, emotional state, and motor responses of a subject. Thus, in the vermis, learning-related
plasticity might be crucial for relaying the appropriate emotional and motor behaviors in response to
sensory stimuli and maintaining this information for long periods. Consistent with this hypothesis,
various animal studies have shown that the potentiation of excitatory [98,99] and inhibitory [100]
synapses that impinge on the same Purkinje cells correlates with associative fear learning. These
changes at the cellular level have long-lasting effects and are related to associative processes.

Other data support cerebellar function in the unconscious components of emotional processes
with regards to its involvement in the implicit processing of facial expression [37]. Schutter et al. [37]
found that repetitive Transcranial Magnetic Stimulation (rTMS) over the midline cerebellum enhances
the implicit processing of happy facial expressions, with no changes in consciously experienced mood.
These findings have been explained by projections from the cerebellar vermis to the ventral tegmental
area of the midbrain, thus modulating the mesolimbic areas through ventral tegmental dopaminergic
projections [60] (see Table 1 for details on reported studies).

These data from various experimental approaches suggest that the cerebellum automatically
modulates emotional behavior to remain within homeostatic baseline levels and according to
the context.

Clinical studies in patients who are affected by ‘cerebellar cognitive affective syndrome’ (CCAS)
and ‘posterior fossa syndrome’ (PFS) have noted impaired modulation of emotional and behavioral
regulation, manifesting as emotional lability, changes in affect [4,6,101–109], and inappropriate
laughing or crying [110–112]. These symptoms have been related specifically to damage to the
vermis, which, based on its connections, has been termed the “limbic cerebellum” [21,64,113].
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3.2. Cerebellar Involvement in the Conscious Component of Emotions

As discussed in the previous section, although the cerebellar vermis participates in fear-related
somatic and autonomic aspects, the posterolateral hemispheres have been proposed to mediate the
emotional content of fear conditioning at higher cognitive levels [114]. This assumption is supported
by the presence of connections between the cerebellar hemispheres and the more ventral and caudal
areas of the dentate nucleus, which in turn are connected to the temporal, parietal, and prefrontal
cortices [115], which are involved in cognitive elaboration of emotional content [32].

Posterior regions of the cerebellum are activated during the anticipation [80], conscious feelings,
and empathy of pain [82].

Furthermore, activation of the posterolateral cerebellar hemispheres is observed in the late
acquisition phase of fear conditioning that is linked to the conscious elaboration of emotional content
of associative learning [79,114].

Consistent with these findings, the cerebellum appears to be involved in more complex functions
that are inherent to emotions and affects.

This idea is supported by neurophysiological data that show a connection between the cerebellum
and higher-order cerebral domains [84,85]. Whereas cerebellar input to autonomic pathways travels
along a closed neuronal loop, event-related potentials (ERP) data has characterized the cerebellum
in higher-order emotional processing as an active interface with large-scale cerebral pathways that
are involved in emotionally conscious processes, including recognition and response to cues with
emotional valence. Impairments in visual emotional attention [84] and emotional face recognition [85]
have been reported in subjects affected by cerebellar hemispheres damage.

Moreover, neuroimaging and neurostimulation studies have shown the involvement of the
cerebellum in conscious processing of emotional facial expressions [69,81,85].

The processing of emotion from facial expressions requires various psychological processes
that are controlled by a wide array of cerebral structures [116], which involve both unconscious
and conscious processes [17,78]. Facial perception is defined as “higher-level visual processing of
faces” [117], involving perception and recognition of the emotional meaning [118]. Facial expressions
are crucial to non-verbal social interactions and are markers of an internal state or an intention [119,120].
Recognizing facial expressions is vital in a complex social world as it permits one to detect the emotional
state of another person and provides cues on how to respond in social situations [121,122].

As discussed in the previous section, the cerebellum has been linked to the implicit processing of
facial expressions. However, fMRI studies have shown that the cerebellum is also activated in addition
to the amygdala and prefrontal cortex during conscious processing of emotional faces [17,36].

These findings are not surprising, considering that the cerebellum belongs to a widespread
network, including the amygdala–medial prefrontal circuitry, which contributes to determine the
meaning of external stimuli and to facilitate cortical processes to react to them coherently [17,123].
Specifically, the medial prefrontal cortex is involved in emotional self-awareness, playing a key role in
complex aspects of emotional processing, such as social interaction [124]. The amygdala is associated
with the perception of emotion, specifically faces [118] and emotional arousing effects [125–128].

Direct support of the hypothesis of cerebellar function in the conscious processing of emotional
faces comes from stimulation studies that have observed a greater ability to recognize negative facial
expressions after transcranial direct current stimulation (tDCS) is performed over the cerebellum [86].

Clinical studies in patients with cerebellar damage have also highlighted the involvement of the
cerebellum in emotional recognition, allowing proper social cognition regardless of stimulus (visual or
auditory), particularly for negative emotions [69,72], and in more complex social cognition domains.
This has become known as the Theory of Mind (ToM) [73,76,77].

Cerebellar function in the conscious mechanisms of emotional processing has been evidenced by
its incorporation into the complex neural circuits that are involved in the cognitive functions [5,26]
needed for defining and expressing the emotional state in oneself or in others. The experience
of feeling is fundamentally influenced by one’s conscious awareness and interpretation of one’s
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mood [129], requiring interdependence between emotion and cognition that is sustained by the
extensive interconnections between the limbic system and the cortical association areas [130] to which
the cerebellum is strongly connected.

Cerebellar recruitment in the conscious component of emotional behavior, related to the awareness
of one’s affective state and the interpretation of one’s mood, has been observed as a loss in
self-perception of emotions in the presence of cerebellar pathology [70,71,131]. In recent studies,
we found that patients with cerebellar damage were unable to feel conscious emotions of regret as a
consequence of their disadvantageous choices in a gambling task [71] or to explicitly recognize their
bad mood in the presence of clinically relevant depressive disorder [70,131] (see Table 1 for details on
reported studies).

4. Discussion

To understand cerebellar function in the various mechanisms that underlie emotions, we
must consider that emotional processing involves various physiological, cognitive, and behavioral
components. As discussed, emotional processing is usually triggered by the unconscious and conscious
perception of internal or external events, and by cognitive judgments [132,133]. It is associated with
changes in body states (i.e., skeletal muscle activity, visceral organs, facial expressions) that are
preparatory for adaptive behavioral responses [134–137]. These alterations can result in conscious
feelings that imply a cognitive understanding of their conceptual emotional meaning. The internal
states might be generated by our own choices or by external events and are characterized by emotional
valence (positive or negative) [138,139] that influences behavioral actions [140]. Emotional processing
is also modulated by other cognitive systems, such as attention, reasoning, and memory [141,142].

Overall, the processing of emotional information implies bottom-up and top-down mechanisms
that ensure coherence between emotional states following internal or external events and suitable
behaviors for various social contexts.

These mechanisms are controlled by complex neuronal networks in which the cerebellum
functions, as reported in the previous sections [26,57,60,61,115].

Thus, the cerebellum might be a central component at which various information streams from
and to the cerebral structures converge, subtending unconscious and conscious mechanisms of
emotional processing.

The cerebellar vermis has been reported as the hub that perceives and forwards emotional cues in
the subcortical–cortical networks [56] that are primarily involved in the unconscious stage of emotion,
whereas the cerebellar hemispheres have been argued to be involved in high-order cognitive functions
that allow conscious emotional processing to be linked to the internal state and perception of the
external environment [56,143].

Thus, the cerebellum is equipped for unconscious and conscious processing, contributing to
internal representations of emotions in addition to the monitoring and integration of interoceptive and
exteroceptive information.

We recently proposed the “sequence detection model” as an operational mode in which
the cerebellum processes information that is related to several domains, including the emotional
domain [144,145]. According to this model, the cerebellum compares disparate states, regardless of the
domains that are involved (motor, cognitive, or emotional) [146]. In particular, the cerebellum detects
and simulates repetitive patterns of temporally or spatially structured events, allowing the creation of
internal models [147] and the prediction of incoming events [148]. Thus, this constantly tunes motor,
behavioral, and emotional responses, based on the ever-changing environment [149].

Considering the function of the cerebellum in state estimation [146], we propose that in the
emotional domain, this structure mediates the comparison between the internal state and external
event, contributing to self-perception of an emotion that is coherent with the environment. Essentially,
it intervenes when the subject must compare the basic emotional state (internal state) and the possible
effect of an action or context (external event).
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In this framework, we have demonstrated that in estimating regret, a subject with cerebellar
damage fails to compare the basic emotional state (internal state) that follows his decision and the
state that is determined by the external event, based on a gambling result [71]. Similarly, in estimating
mood state by a mood monitoring (MoMo) device [150], a subject who is affected by cerebellar damage
is unable to recognize his bad mood state (internal state), which shows his inability to compare the
internal state with the external negative or positive event [70,131].

These observations are consistent with the cerebellar involvement in optimizing
internal and external responses according to the environment, akin to a master regulatory
structure for integrating motor, emotional, and sensory information that affects “mind–world
synchronization” [151]. When cerebellar function is altered, the processing of information streams
becomes desynchronized [147,151,152], providing a breeding ground for various psychopathological
disorders, such as schizophrenia, autism, and depressive disorders, in which cerebellar dysfunctions
have been reported [153–155]. For example, certain symptoms of schizophrenia and the dysregulation
of mood homeostasis in depression disorders have been linked to a failure to compare internal and
external representations [151].

The cerebellar dysfunction in these diseases further supports the hypothesis that cerebellar
processing also participates in generating coherent and conscious representations of self-perception
and the external world [39,71,146,156].

Overall, the emotional and behavioral impairments in cerebellar patients and psychopathologies,
in which structural and functional changes occur at the cerebellar level, might arise from an internal
discrepancy between internally perceived and externally generated signals. This internal coherence at
the unconscious and conscious levels is necessary to ensure an emotional behavior that is coherent
with the environment and a self-perception of one’s emotional state that is consistent with the context.

5. Conclusions

Following the theoretical framework above, emotional processing implies the existence
of unconscious and conscious components that require complex bottom-up and top-down
interactions [32]. These interactions are necessary to compare the expectations that are related to
past emotional experiences or a social situation, with sensory inputs from the body states through
feedforward and feedback signals. As evidenced in this review, the cerebellum participates in
modulating the unconscious and conscious levels of emotional processing. This is understandable
in the sequence detection theory, which implicates the cerebellum as a structure that compares
disparate states to create internal models and predict events [144,145]. Thus, in the emotional domain,
measuring cerebellar function with regards to state estimation and its ability to process and predict
sequential events allows one to compare different states, integrating internal and external events at
the unconscious and conscious levels. This is allowed by the cerebellar integrated functioning in the
complex neural networks that subserve the unconscious and conscious components of the emotional
domain [56–65].

This proposal opens new perspectives on cerebellar function in the etiopathology of
neuropsychiatric and mood disorders and novel neuromodulatory therapeutic approaches.
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