2,914 research outputs found

    Statics and Dynamics of Strongly Charged Soft Matter

    Full text link
    Soft matter materials, such as polymers, membranes, proteins, are often electrically charged. This makes them water soluble, which is of great importance in technological application and a prerequisite for biological function. We discuss a few static and dynamic systems that are dominated by charge effects. One class comprises complexation between oppositely charged objects, for example the adsorption of charged ions or charged polymers (such as DNA) on oppositely charged substrates of different geometry. The second class comprises effective interactions between similarly charged objects. Here the main theme is to understand the experimental finding that similarly and highly charged bodies attract each other in the presence of multi-valent counterions. This is demonstrated using field-theoretic arguments as well as Monte-Carlo simulations for the case of two homogeneously charged bodies. Realistic surfaces, on the other hand, are corrugated and also exhibit modulated charge distributions, which is important for static properties such as the counterion-density distribution, but has even more pronounced consequences for dynamic properties such as the counterion mobility. More pronounced dynamic effects are obtained with highly condensed charged systems in strong electric fields. Likewise, an electrostatically collapsed highly charged polymer is unfolded and oriented in strong electric fields. At the end of this review, we give a very brief account of the behavior of water at planar surfaces and demonstrate using ab-initio methods that specific interactions between oppositely charged groups cause ion-specific effects that have recently moved into the focus of interest.Comment: 61 pages, 31 figures, Physics Reports (2005)-in press (high quality figures available from authors

    Critical adsorption of polyelectrolytes onto charged Janus nanospheres

    Full text link
    Based on extensive Monte Carlo simulations and analytical considerations we study the electrostatically driven adsorption of flexible polyelectrolyte chains onto charged Janus nanospheres. These net-neutral colloids are composed of two equally but oppositely charged hemispheres. The critical binding conditions for polyelectrolyte chains are analysed as function of the radius of the Janus particle and its surface charge density, as well as the salt concentration in the ambient solution. Specifically for the adsorption of finite-length polyelectrolyte chains onto Janus nanoparticles, we demonstrate that the critical adsorption conditions drastically differ when the size of the Janus particle or the screening length of the electrolyte are varied. We compare the scaling laws obtained for the adsorption-desorption threshold to the known results for uniformly charged spherical particles, observing significant disparities. We also contrast the changes to the polyelectrolyte chain conformations and the binding energy distributions close to the adsorption-desorption transition for Janus nanoparticles to those for simple spherical particles. Finally, we discuss experimentally relevant physico-chemical systems for which our simulations results may become important. In particular, we observe similar trends with polyelectrolyte complexation with oppositely but heterogeneously charged proteins.Comment: 13 pages, 11 figures, RevTeX

    Relaxation dynamics at different time scales in electrostatic complexes: Time-salt superposition

    Get PDF
    In this Letter we show that in the rheology of electrostatically assembled soft materials, salt concentration plays a similar role as temperature for polymer melts, and as strain rate for soft solids. We rescale linear and nonlinear rheological data of a set of model electrostatic complexes at different salt concentrations to access a range of time scales that is otherwise inaccessible. This provides new insights into the relaxation mechanisms of electrostatic complexes, which we rationalize in terms of a microscopic mechanism underlying salt-enhanced activated processe

    Increased Concentration of Polyvalent Phospholipids in the Adsorption Domain of a Charged Protein

    Get PDF
    We studied the adsorption of a charged protein onto an oppositely charged membrane, composed of mobile phospholipids of differing valence, using a statistical-thermodynamical approach. A two-block model was employed, one block corresponding to the protein-affected region on the membrane, referred to as the adsorption domain, and the other to the unaffected remainder of the membrane. We calculated the protein-induced lipid rearrangement in the adsorption domain as arising from the interplay between the electrostatic interactions in the system and the mixing entropy of the lipids. Equating the electrochemical potentials of the lipids in the two blocks yields an expression for the relations among the various lipid fractions in the adsorption domain, indicating a sensitive dependence of lipid fraction on valence. This expression is a result of the two-block picture but does not depend on further details of the protein-membrane interaction. We subsequently calculated the lipid fractions themselves using the Poisson-Boltzmann theory. We examined the dependence of lipid enrichment, i.e., the ratio between the lipid fractions inside and outside the adsorption domain, on various parameters such as ionic strength and lipid valence. Maximum enrichment was found for lipid valence of about (-3) to (-4) in physiological conditions. Our results are in qualitative agreement with recent experimental studies on the interactions between peptides having a domain of basic residues and membranes containing a small fraction of the polyvalent phosphatidylinositol 4,5-bisphosphate (PIP2). This study provides theoretical support for the suggestion that proteins adsorbed onto membranes through a cluster of basic residues may sequester PIP2 and other polyvalent lipids.Comment: 25 pages, 12 figure

    Helical scattering and valleytronics in bilayer graphene

    Get PDF
    We describe an angularly asymmetric interface-scattering mechanism which allows to spatially separate the electrons in the two low-energy valleys of bilayer graphene. The effect occurs at electrostatically defined interfaces separating regions of different pseudospin polarization, and is associated with the helical winding of the pseudospin vector across the interface, which breaks the reflection symmetry in each valley. Electrons are transmitted with a preferred direction of up to 60° over a large energetic range in one of the valleys, and down to −60° in the other. In a Y-junction geometry, this can be used to create and detect valley polarization

    Electrically Tunable Excitonic Light Emitting Diodes based on Monolayer WSe2 p-n Junctions

    Full text link
    Light-emitting diodes are of importance for lighting, displays, optical interconnects, logic and sensors. Hence the development of new systems that allow improvements in their efficiency, spectral properties, compactness and integrability could have significant ramifications. Monolayer transition metal dichalcogenides have recently emerged as interesting candidates for optoelectronic applications due to their unique optical properties. Electroluminescence has already been observed from monolayer MoS2 devices. However, the electroluminescence efficiency was low and the linewidth broad due both to the poor optical quality of MoS2 and to ineffective contacts. Here, we report electroluminescence from lateral p-n junctions in monolayer WSe2 induced electrostatically using a thin boron nitride support as a dielectric layer with multiple metal gates beneath. This structure allows effective injection of electrons and holes, and combined with the high optical quality of WSe2 it yields bright electroluminescence with 1000 times smaller injection current and 10 times smaller linewidth than in MoS2. Furthermore, by increasing the injection bias we can tune the electroluminescence between regimes of impurity-bound, charged, and neutral excitons. This system has the required ingredients for new kinds of optoelectronic devices such as spin- and valley-polarized light-emitting diodes, on-chip lasers, and two-dimensional electro-optic modulators.Comment: 13 pages main text with 4 figures + 4 pages upplemental material

    Bjerrum pairing correlations at charged interfaces

    Full text link
    Electrostatic correlations play a fundamental role in aqueous solutions. In this letter, we identify transverse and lateral correlations as two mutually exclusive regimes. We show that the transverse regime leads to binding by generalization of Bjerrum pair formation theory, yielding binding constants from first-principle statistical-mechanical calculations. We compare our theoretical predictions with experiments on charged membranes and Langmuir monolayers and find good agreement. We contrast our approach with existing theories in the strong-coupling limit and on charged modulated interfaces, and discuss different scenarios that lead to charge reversal and equal-sign attraction by macro-ions.Comment: 7 pages, 4 figure
    • …
    corecore