1,299 research outputs found

    Discrete Breathers

    Full text link
    Nonlinear classical Hamiltonian lattices exhibit generic solutions in the form of discrete breathers. These solutions are time-periodic and (typically exponentially) localized in space. The lattices exhibit discrete translational symmetry. Discrete breathers are not confined to certain lattice dimensions. Necessary ingredients for their occurence are the existence of upper bounds on the phonon spectrum (of small fluctuations around the groundstate) of the system as well as the nonlinearity in the differential equations. We will present existence proofs, formulate necessary existence conditions, and discuss structural stability of discrete breathers. The following results will be also discussed: the creation of breathers through tangent bifurcation of band edge plane waves; dynamical stability; details of the spatial decay; numerical methods of obtaining breathers; interaction of breathers with phonons and electrons; movability; influence of the lattice dimension on discrete breather properties; quantum lattices - quantum breathers. Finally we will formulate a new conceptual aproach capable of predicting whether discrete breather exist for a given system or not, without actually solving for the breather. We discuss potential applications in lattice dynamics of solids (especially molecular crystals), selective bond excitations in large molecules, dynamical properties of coupled arrays of Josephson junctions, and localization of electromagnetic waves in photonic crystals with nonlinear response.Comment: 62 pages, LaTeX, 14 ps figures. Physics Reports, to be published; see also at http://www.mpipks-dresden.mpg.de/~flach/html/preprints.htm

    Quantum discrete breathers

    Full text link
    We review recent studies about quantum discrete breathers. We describe their basic properties in comparison with their classical counterparts, and the ways they may be addressed theoretically in different quantum lattice models including either bosonic or fermionic excitations. We also review recent experimental work in the field.Comment: 49 pages, 36 figures, some corrected typos, and the section "Conclusions and outlook" was added. Chapter for a book edited by S. Keshavamurthy and P. Schlagheck with title "Dynamical Tunneling: Theory and Experiment

    Discrete Nonlinear Schr{\"o}dinger Breathers in a Phonon Bath

    Full text link
    We study the dynamics of the discrete nonlinear Schr{\"o}dinger lattice initialized such that a very long transitory period of time in which standard Boltzmann statistics is insufficient is reached. Our study of the nonlinear system locked in this {\em non-Gibbsian} state focuses on the dynamics of discrete breathers (also called intrinsic localized modes). It is found that part of the energy spontaneously condenses into several discrete breathers. Although these discrete breathers are extremely long lived, their total number is found to decrease as the evolution progresses. Even though the total number of discrete breathers decreases we report the surprising observation that the energy content in the discrete breather population increases. We interpret these observations in the perspective of discrete breather creation and annihilation and find that the death of a discrete breather cause effective energy transfer to a spatially nearby discrete breather. It is found that the concepts of a multi-frequency discrete breather and of internal modes is crucial for this process. Finally, we find that the existence of a discrete breather tends to soften the lattice in its immediate neighborhood, resulting in high amplitude thermal fluctuation close to an existing discrete breather. This in turn nucleates discrete breather creation close to a already existing discrete breather

    Nonintegrable Schrodinger Discrete Breathers

    Full text link
    In an extensive numerical investigation of nonintegrable translational motion of discrete breathers in nonlinear Schrodinger lattices, we have used a regularized Newton algorithm to continue these solutions from the limit of the integrable Ablowitz-Ladik lattice. These solutions are shown to be a superposition of a localized moving core and an excited extended state (background) to which the localized moving pulse is spatially asymptotic. The background is a linear combination of small amplitude nonlinear resonant plane waves and it plays an essential role in the energy balance governing the translational motion of the localized core. Perturbative collective variable theory predictions are critically analyzed in the light of the numerical results.Comment: 42 pages, 28 figures. to be published in CHAOS (December 2004

    Impulse-induced localized nonlinear modes in an electrical lattice

    Get PDF
    Intrinsic localized modes, also called discrete breathers, can exist under certain conditions in one-dimensional nonlinear electrical lattices driven by external harmonic excitations. In this work, we have studied experimentally the efectiveness of generic periodic excitations of variable waveform at generating discrete breathers in such lattices. We have found that this generation phenomenon is optimally controlled by the impulse transmitted by the external excitation (time integral over two consecutive zerosComment: 5 pages, 8 figure

    Dimension dependent energy thresholds for discrete breathers

    Full text link
    Discrete breathers are time-periodic, spatially localized solutions of the equations of motion for a system of classical degrees of freedom interacting on a lattice. We study the existence of energy thresholds for discrete breathers, i.e., the question whether, in a certain system, discrete breathers of arbitrarily low energy exist, or a threshold has to be overcome in order to excite a discrete breather. Breather energies are found to have a positive lower bound if the lattice dimension d is greater than or equal to a certain critical value d_c, whereas no energy threshold is observed for d<d_c. The critical dimension d_c is system dependent and can be computed explicitly, taking on values between zero and infinity. Three classes of Hamiltonian systems are distinguished, being characterized by different mechanisms effecting the existence (or non-existence) of an energy threshold.Comment: 20 pages, 5 figure

    Low-frequency discrete breathers in long-range systems without on-site potential

    Get PDF
    We propose a new mechanism of long-range coupling to excite low-frequency discrete breathers without the on-site potential. This mechanism is universal in long-range systems irrespective of the spatial boundary conditions, of topology of the inner degree of freedom, and of precise forms of the coupling functions. The limit of large population is theoretically discussed for the periodic boundary condition. Existence of discrete breathers is numerically demonstrated with stability analysis.Comment: 5 pages, 4 figure

    Surface breathers in discrete magnetic metamaterials

    Get PDF
    We analyze the properties of discrete breathers excited near the edge of a one-dimensional metamaterial created by a truncated array of nonlinear split-ring resonators. We study a crossover between nonlinear surface states and discrete breathers by analyzing the modes centered at finite distances from the array edge and demonstrate the existence of a class of nonlinear localized surface states, the so-called nonlinear Tamm states or surface breathers, which exhibit features that have no counterparts either in the continuous systems or in linear arrays

    Discrete breathers in dissipative lattices

    Full text link
    We study the properties of discrete breathers, also known as intrinsic localized modes, in the one-dimensional Frenkel-Kontorova lattice of oscillators subject to damping and external force. The system is studied in the whole range of values of the coupling parameter, from C=0 (uncoupled limit) up to values close to the continuum limit (forced and damped sine-Gordon model). As this parameter is varied, the existence of different bifurcations is investigated numerically. Using Floquet spectral analysis, we give a complete characterization of the most relevant bifurcations, and we find (spatial) symmetry-breaking bifurcations which are linked to breather mobility, just as it was found in Hamiltonian systems by other authors. In this way moving breathers are shown to exist even at remarkably high levels of discreteness. We study mobile breathers and characterize them in terms of the phonon radiation they emit, which explains successfully the way in which they interact. For instance, it is possible to form ``bound states'' of moving breathers, through the interaction of their phonon tails. Over all, both stationary and moving breathers are found to be generic localized states over large values of CC, and they are shown to be robust against low temperature fluctuations.Comment: To be published in Physical Review
    corecore