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Surface breathers in discrete magnetic metamaterials
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We analyze the properties of discrete breathers excited near the edge of a one-dimensional metamaterial
created by a truncated array of nonlinear split-ring resonators. We study a crossover between nonlinear surface
states and discrete breathers by analyzing the modes centered at finite distances from the array edge and
demonstrate the existence of a class of nonlinear localized surface states, the so-called nonlinear Tamm states
or surface breathers, which exhibit features that have no counterparts either in the continuous systems or in

linear arrays.
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It is well established that a special class of localized
modes can be generated at surfaces, and such surface states
have been studied in many areas of physics including elec-
trons in crystals [1,2], surface phonons [3], and surface po-
laritons [4]. Recently, the interest in the study of nonlinear
surface waves has been renewed after the theoretical predic-
tion [5] and subsequent experimental demonstration [6] of
nonlinearity induced light localization near the edge of a
one-dimensional waveguide array with self-focusing nonlin-
earity that can lead to the formation of the so-called nonlin-
ear Tamm states or surface solitons. The generation of such a
surface soliton can be understood with the help of simple
physics [7] as a trapping of a discrete soliton [8] near the
repulsive edge of the truncated lattice when the beam power
exceeds some threshold value. These surface solitons be-
come possible solely due to discreteness effects, and they
exist in neither continuous nor linear limits. Some of the
specific features of such optical surface solitons in other rel-
evant physical settings have been recently investigated both
theoretically [9-12] and experimentally [13-15].

Recently, it was shown theoretically that magnetic
metamaterials composed of split-ring resonators may exhibit
discreteness effects due to weak coupling [16,17]. In particu-
lar, it was shown that in one-dimensional discrete arrays of
nonlinear split-ring resonators (SRRs), where each ring inter-
acts with its nearest neighbors, on-site nonlinearity [18] and
weak coupling [16,17] may result in the appearance of dis-
crete breather excitations, both in the energy conserved and
the dissipative system [16]. In nonlinear magnetic metama-
terials discrete breathers have been analyzed so far in infinite
arrays. In this paper, being encouraged by the recent experi-
ments in optics [6,13—15], we study the discrete breathers
located near the edge of a one-dimensional discrete array of
nonlinear SRRs. We demonstrate the existence of a class of
nonlinear surface localized states, the so-called surface
breathers, which exhibit features that have no counterpart in
the continuous limit. Actually, a two-dimensional magnetic
metamaterial comprised of SRRs with varactor diodes,
which makes it nonlinear, has been already realized [19].
That metamaterial, which operates at microwave frequencies,
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is dynamically tunable by varying the amplitude of the
propagating electromagnetic waves.

We consider a periodic array of identical nonlinear SRRs,
which is a simple realization of a magnetic metamaterial in
one dimension, with the SRRs separated by distance d. Two
different configurations, planar and axial, are shown sche-
matically in Figs. 1(a) and 1(b), respectively. In the planar
configuration, all SRR loops are lying in the same plane with
their centers located on a straight line, while in the axial
configuration the line connecting the centers of the SRR
loops is perpendicular to the plane of the loops. Each SRR
can be mapped to a nonlinear resistor-inductor-capacitor cir-
cuit featuring self-inductance L, ohmic resistance R, and ca-
pacitance C. We assume that the SRRs become nonlinear due
to a Kerr-type dielectric filling their slits [18]. The field-
dependent permittivity of that dielectric is of the form
e(|E]>)=€y(e,+a|E|*/E?), where E is the electric field, E, is
a characteristic (large) electric field, €, is the linear permit-
tivity, € is the permittivity of the vacuum, and a=+1 (-1)
corresponding to the focusing (defocusing) nonlinearity. As a
result, the SRRs acquire a field-dependent capacitance
C(|E[*) = e(|E,|*), where E, is the electric field induced along
the SRR slit [18]. The origin of E, may be due to the mag-
netic and/or the electric components of the applied field, de-
pending on the relative orientation of that field with respect
to the SRRs’ plane and the slits. In the following we assume
that, for both configurations, the magnetic component of the
incident electromagnetic field is perpendicular to the SRRs’
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FIG. 1. Schematic of a one-dimensional array of split-ring reso-
nators in (a) planar and (b) axial geometries. The axes of the split-
ring resonators as well as the magnetic component of the applied
field are directed in parallel. The electric field component is trans-
versal to the slits.
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plane, while the electric component is transversal to the slits.
Then, only the magnetic component excites an electromotive
force, resulting in an oscillating current in each SRR loop.
The charge Q in the capacitor of a SRR is given by

0=C/(1+alU%3e,U*U, (1)

where U=d,E,, C, is linear capacitance, and U.=d,E,, d,
being the size of the slits. The SRRs in an array are coupled
together due to magnetic interaction through their mutual
inductances, with nearest-neighbor coupling.

The dynamics of the charge Q, accumulated in the capaci-
tor of the nth SRR, if one ignores ohmic losses, is described
by the equation [16,17,20]

d2

LE{)\Q"_] + Qn + )\Qn—l} = _f(Qn) s (2)
where A=L/M describes the coupling between the neighbor-
ing SRRs with the mutual inductance M, and f(Q,)=U,
=U(Q,) is found from Eq. (1). The current 7, in the nth SRR
is defined as I,=dQ,/dt. Equation (2) can be written in the
normalized form as

2
E{AQH—I +q,t+ )\qn+l} = _f(qn) s (3)

where we use the following scaling: w;zzLCg, T=twy, I,
=Ucw€C€’ QC=C€UC’ Inzlcin’ and Qn=chn' Equation (3)
can be derived from the Hamiltonian

1
H= 52 {415 + )\q'n(qn—l + qil+l)} + E an (4)

where the first (second) term represents the “kinetic” (poten-
tial) energy. The nonlinear on-site potential V, is given by

q’l
V= Vg, = f fg!)da. )
0

and ¢,=dgq,/dt. The function f(g,) can be approximated by
the series £(q,) =q,—Xq.+3X°q— - - , where x=a/3¢,.

The on-site potential Eq. (5) with the exact form of f(g,,)
(not given here) can be calculated analytically. For example,
for a=+1 that potential is of the form

1
Vn — b0g2/3 + blg—4/3 + b2g4/3 + b3g_2/3 + 6_, (6)
X
where
!,_ /7
g=-9g,X*+3g;, g =VA+2Txg)x’, (7)

and by,b,,b,,bs are constants

bO - _ 31/3/(65/3)(2), bl =+ 31/3)(/62/39 (8)

by=+2"7/(24-6"°)), by=-2"7/6"". 9)

A similar expression can be obtained for the case a=-1.
We consider two different configurations of one-
dimensional SRR arrays shown in Fig. 1, with the same
number of SRR oscillators N=50. Within the equivalent cir-
cuit model, the difference between the two configurations
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FIG. 2. Profiles of nonlinear surface breathers in an SRR array
for (a),(b) planar and (c),(d) axial geometries, with €,=2, N=50,
and (a) a=-1, \=-0.035, T;=6.69, (b) a=+1, \=-0.04, T
=6.69 (c) a=-1, A=0.035, T;=5.95, and (d) a=+1, A=0.04, T
=5.95.

resides in the sign and the magnitude of the coupling param-
eter \. Specifically, in the planar (axial) configuration X\ is
negative (positive).

For the Hamiltonian system (3), surface states can be con-
structed with the same methods used for the construction of
Hamiltonian discrete breathers, i.e., starting from the anti-
continuous limit [21] where all SRRs are uncoupled (A
—0). Here we are interested in finite SRR arrays with open-
ended boundary conditions, i.e.,

90=0, gy, =0. (10)
A surface localized state of the one-dimensional system ob-
viously corresponds to an edge state, i.e., a state with a maxi-
mum at either the first or the last element of the array, which
decays quickly away from the array edge. According to Ref.
[21] we first identify the period T; of a state with given
amplitude g, for a single array element. Then, for the whole
array, an initial condition with ¢,=0 for any n# 1, g,=q7,
and ¢,=i,=0 for any n represents a trivial surface state (sur-
face breather) with period T and A=0. Continuation of this
solution for \ # 0 using the Newton’s method results in nu-
merically exact surface breathers up to some maximum value
of the coupling parameter A=A\,,,,. The requirement for the
existence of such states is that their frequency Q;=27/T;
and all its multiples lie outside the linear dispersion band
Q,=1/v1+42\ cos(k), where )= w/ wy is the normalized fre-
quency, and k=kd is the normalized wave number
(-m=k=1r). They should cease to exist when the linear
wave band, which expands with increasing A, reaches the
excitation frequency (7. That will occur at |\|=|\,.|=|1
-1/03]/2.

Following the procedure described above, we have con-
structed several types of highly localized surface breathers in
both the planar and axial configurations, and both self-
focusing (= +1) and self-defocusing (a=—1) nonlinearities.
The profiles of such states, i.e., the normalized charge g, as a
function of the array site n, taken at maximum amplitude, are
shown in Figs. 2(a)-2(d). The staggered and/or unstaggered
character of those states depends on the combination of the
signs of the coupling N and the nonlinearity coefficient a.
Specifically, they are staggered for a\ <O [see Figs. 2(b) and
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FIG. 3. (Color online) Time evolution of ¢,, n=1,2,3,4,5, of
the nonlinear Tamm states in a SRR array in the planar geometry
for a=+1, =2, Ty=6.69, and A=-0.02 (a); A=-0.04 (b). In this
figure ¢, is black solid, g, is red dotted, g5 is green dashed, g4 is
blue long-dashed, and g5 is yellow dotted-dashed.

2(c)] and unstaggered for a\ >0 [see Figs. 2(a) and 2(d)].
Multiple-site surface breathers can be also constructed with
Newton’s method, with appropriate choice of the initial con-
ditions.

Since the system is one dimensional, there is no possibil-
ity for transverse motion. However, the surface breathers
have their own internal dynamics since, similar to their bulk
counterparts, they execute periodic oscillations with fre-
quency ;. A typical example of the time evolution of the
q,’s for the first few sites is shown in Fig. 3. In this specific
case the time dependence of ¢,’s is almost sinusoidal. This
need not necessarily be true for other parameter sets. Here
also the staggered character of that specific state is revealed,
since neighboring ¢,,’s oscillate with opposite phases.

Furthermore, surface breathers having their maxima lo-
cated at sites other than the first one can be constructed, as
shown in Fig. 4. In this figure, surface breather profiles are
located either at n=1 (true surface breathers) or at n=2 and
n=3. The states in Figs. 4(b) and 4(c) [Figs. 4(e) and 4(f)]
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FIG. 4. Profiles of the nonlinear surface states near the edge of
the truncated SRR array in the axial geometry (A>0) for a=+1,
€=2, Tr=6.69, N=50, and (a)—(c) A=0.02 and (d)—(f) A=0.043.
The states are located at (a),(b) n=1, (c),(d) n=2, and (e),(f) n=3.
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FIG. 5. (Color online) Energy density E, on the n-7 plane for
nonlinear surface breathers for a=+1, €,=2, Tr=6.69, N=50, fol-
lowed for 2400077, and (a) N=0.0426, stable state; (b) A=0.0428,
unstable state. Contour levels at 0.3 (solid red curves), 0.12 (green
dashed curves), and 0.02 (blue short-dashed curves).

describe a crossover regime between the state in Fig. 4(a)
[Fig. 4(d)], with the maximum amplitude at the surface, and
the states with a maximum at larger n (n >3, bulk breathers),
which are weakly affected by the presence of the surface.

In comparison with the infinite SRR array, the truncated
array introduces an effective repulsive potential at the sur-
face, which is combined with the periodic (Peierls-Nabarro)
potential of the infinite array (see also Ref. [7]). As a result,
surface breathers cannot exist in the linear regime or in the
continuous limit. The surface breathers become unstable well
before their frequency touches the linear wave band. At some
critical value of |[\|=|\.| <|\,..| the repulsion from the sur-
face exceeds the Peierls-Nabarro potential for this |\.|, re-
sulting in the transformation of the surface state to a discrete
soliton (breather) which moves irregularly in the SRR lattice.
An illustrative example of such behavior is shown in Fig. 5.
There the time evolution of the energy density of the SRR
array is plotted for two different values of N around the in-
stability threshold for a specific set of parameters. While in
Fig. 5(a) the energy is clearly localized at the edge of the
array, remaining constant for long time intervals, in Fig. 5(b)
the surface breather is transformed into an irregularly mov-
ing discrete breather. However, even that wandering discrete
breather seems to be rather long-lived, while its total energy
remains constant.

Figure 6 shows the total energy E,,, given by the Hamil-
tonian (4) of the localized surface breathers shown in Figs.
4(a)-4(c) for which A=0.02 [Fig. 6(a)], as well as for the
corresponding states for A=0.03 [Fig. 6(b)], as a function of
their frequency ();. We observe that there is an excess of
energy for the true surface breathers compared to the cross-
over cases and of course the bulk breathers. This energy
difference increases with increasing A, as can be inferred by
direct comparison between Figs. 6(a) and 6(b). The total en-
ergy decreases almost linearly with increasing frequency .
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FIG. 6. (Color online) Energy of the nonlinear surface states as
a function of ), near the edge of the truncated SRR array in the
axial geometry for a=+1, €=2, N=50, and N\ as shown in the
figure. The state at n=1 is located at the edge and it has the maxi-
mum energy.

The E,,-{); curves begin to curve at relatively high frequen-
cies and eventually show an up turn when the surface breath-
ers become unstable. The critical frequency, defined by
dE,,;/dQ;=0, clearly depends on the coupling parameter \
and the location of the maximum amplitude of the surface
states. The qualitative aspects of Fig. 6 are similar to those of
the corresponding figures of power vs propagation constant
for surface states in the semi-infinite waveguide arrays [7].
In conclusion, we have analyzed the effect of boundaries
on the properties of discrete breathers in arrays of nonlinear
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split-ring resonators. We have demonstrated that near the
edge of the array, on-site magnetic nonlinearity and discrete-
ness may support a class of nonlinear surface localized
states, the so-called surface breathers, which exhibit features
that have no counterparts in the continuous limit and, in par-
ticular, exist above a certain energy threshold. We have stud-
ied a crossover between nonlinear surface states and discrete
breathers by analyzing the families of odd and even modes
centered at finite distances from the surface. Those states, as
well as other nonlinear excitations, could be created in
metamaterials similar to the one presented in Ref. [19]. In
the present work we study the surface states in the ideal case
where there are no losses. In the presence of losses, we
should also analyze their relaxation in finite lifetime, or the
convergence of an “arbitrary state” to a surface state. How-
ever, we may expect that in the presence of pumping or gain
the driven state would be close to the undamped state that we
study, but with the parameters defined by a balance of gain
and loss.
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