2,932 research outputs found

    Biotechnological modification and functionalisation of polyester surfaces

    Get PDF
    Synthetic fibers form an important part of the textile industry, the production of polyester alone surpassing that of cotton. A disadvantage of synthetic fibers is their low hydrophilicity. Polyester fibers are particularly hydrophobic. This affects the processability and functionalisation of the fibers. A relatively new and promising alternative is the use of enzymes in surface modification of synthetic fibers. Synthetic materials have generally been considered resistant to biological degradation; recent developments at different research groups demonstrate that enzymes are very well capable of hydrolysing synthetic materials

    Structural investigations of the regio- and enantioselectivity of lipases

    Get PDF
    Although lipases are widely applied for the stereospecific resolution of racemic mixtures of esters, the atomic details of the factors that are responsible for their stereospecificity are largely obscure. We determined the X-ray structures of Pseudomonas cepacia lipase in complex with two enantiopure triglyceride analogues, that closely mimic natural substrates. This allowed an unambiguous view of how the two wings of the boomerang-shaped active site accommodate the acyl and alcohol parts of the triglyceride. The binding groove for the hydrophobic sn-3 fatty acid chain is large and hydrophobic. The cleft for the alcohol moiety is divided in two parts, one tightly binding the sn-2 acyl chain with hydrophilic and hydrophobic interactions, the other more weakly binding the sn-1 fatty acid. The enantioselectivity of Pseudomonas cepacia lipase seems therefore to be predominantly determined by the size and interactions of the sn-2 chain and by the size of the sn-3 chain.

    Characterization of thermobifida fusca cutinase-carbohydrate-Binding modube fusion proteins and their potential application in bioscouring

    Get PDF
    Cutinase from Thermobifida fusca is thermally stable and has potential application in the bioscouring of cotton in the textile industry. In the present study, the carbohydrate-binding modules (CBMs) from T. fusca cellulase Cel6A (CBMCel6A) and Cellulomonas fimi cellulase CenA (CBMCenA) were fused, separately, to the carboxyl terminus of T. fusca cutinase. Both fusion enzymes, cutinase-CBMCel6A and cutinase-CBMCenA, were expressed in Escherichia coli and purified to homogeneity. Enzyme characterization showed that both displayed similar catalytic properties and pH stabilities in response to T. fusca cutinase. In addition, both fusion proteins displayed an activity half-life of 53 h at their optimal temperature of 50°C. Compared to T. fusca cutinase, in the absence of pectinase, the binding activity on cotton fiber was enhanced by 2% for cutinase-CBMCel6A and by 28% for cutinase-CBMCenA, whereas in the presence of pectinase, the binding activity was enhanced by 40% for the former and 45% for the latter. Notably, a dramatic increase of up to 3-fold was observed in the amount of released fatty acids from cotton fiber by both cutinase-CBM fusion proteins when acting in concert with pectinase. This is the first report of improving the scouring efficiency of cutinase by fusing it with CBM. The improvement in activity and the strong synergistic effect between the fusion proteins and pectinase suggest that they may have better applications in textile bioscouring than the native cutinase

    Purification and characterization of a 40.8-kDa cutinase in ungerminated conidia of Botrytis cinerea Pers.: Fr

    Get PDF
    Cytoplasmic soluble proteins from ungerminated conidia of Botrytis cinerea exhibited cutinase activity. A 40.8-kDa cutinase was purified to homogeneity from this crude conidial protein extract. This cutinase does not correspond either to constitutive or to induced lytic cutin enzymes already described by other authors. The possible role of this constitutive cutinase in the induction of other cutinolytic proteins in the early stages of infection of plants by B. cinerea is discusse

    A molecular diagnostic for tropical race 4 of the banana

    Get PDF
    This study analysed genomic variation of the translation elongation factor 1 (TEF-1) and the intergenic spacer region (IGS) of the nuclear ribosomal operon of Fusarium oxysporum f. sp. cubense (Foc) isolates, from different banana production areas, representing strains within the known races, comprising 20 vegetative compatibility groups

    Plasticizer degradation by marine bacterial isolates : a proteogenomic and metabolomic characterization

    Get PDF
    Many commercial plasticizers are toxic endocrine-disrupting chemicals that are added to plastics during manufacturing and may leach out once they reach the environment. Traditional phthalic acid ester plasticizers (PAEs), such as dibutyl phthalate (DBP) and bis(2-ethyl hexyl) phthalate (DEHP), are now increasingly being replaced with more environmentally friendly alternatives, such as acetyl tributyl citrate (ATBC). While the metabolic pathways for PAE degradation have been established in the terrestrial environment, to our knowledge, the mechanisms for ATBC biodegradation have not been identified previously and plasticizer degradation in the marine environment remains underexplored. From marine plastic debris, we enriched and isolated microbes able to grow using a range of plasticizers and, for the first time, identified the pathways used by two phylogenetically distinct bacteria to degrade three different plasticizers (i.e., DBP, DEHP, and ATBC) via a comprehensive proteogenomic and metabolomic approach. This integrated multi-OMIC study also revealed the different mechanisms used for ester side-chain removal from the different plasticizers (esterases and enzymes involved in the β-oxidation pathway) as well as the molecular response to deal with toxic intermediates, that is, phthalate, and the lower biodegrading potential detected for ATBC than for PAE plasticizers. This study highlights the metabolic potential that exists in the biofilms that colonize plastics-the Plastisphere-to effectively biodegrade plastic additives and flags the inherent importance of microbes in reducing plastic toxicity in the environment

    Cutinase purification on poly(ethylene glycol)–hydroxypropyl starch aqueous two-phase systems

    Get PDF
    The partition behaviour of cutinase on poly(ethylene glycol) (PEG)–hydroxypropyl starch aqueous two-phase systems was characterized. The effect of molecular mass of PEG, the pH of the system and tie-line length on cutinase partition coefficient and cutinase yield to the top phase was investigated for systems prepared with a purified hydroxypropyl starch (Reppal PES 100) and a crude one (HPS). The effect of the presence of different salts, such as sodium chloride, sodium sulphate and ammonium sulphate, on cutinase partition was also studied. The results lead to the conclusion that aqueous two-phase systems composed of PEG and hydroxypropyl starch are not efficient in the purification of cutinase. In the majority of cases, the partition coefficients were very close to 1, with pH being the factor which affects most cutinase partition. Partition coefficients were significantly improved when salts were added to the systems. For PEG 4000–Reppal PES 100 [at pH 4.0; 0.5 M (NH4)2 SO4], the partition coefficient for cutinase was 3.7, while a value of 12 was obtained for PEG 4000–HPS (at pH 4.0; 1 M NaC1). An isoelectric point (pI ) of 7.8 was confirmed for cutinase by constructing a cross partition graphic from the results obtained in the experiments with different salts. 1998 Elsevier Science B.V. All rights reserved

    The architecture of the protein domain universe

    Get PDF
    Understanding the design of the universe of protein structures may provide insights into protein evolution. We study the architecture of the protein domain universe, which has been found to poses peculiar scale-free properties (Dokholyan et al., Proc. Natl. Acad. Sci. USA 99: 14132-14136 (2002)). We examine the origin of these scale-free properties of the graph of protein domain structures (PDUG) and determine that that the PDUG is not modular, i.e. it does not consist of modules with uniform properties. Instead, we find the PDUG to be self-similar at all scales. We further characterize the PDUG architecture by studying the properties of the hub nodes that are responsible for the scale-free connectivity of the PDUG. We introduce a measure of the betweenness centrality of protein domains in the PDUG and find a power-law distribution of the betweenness centrality values. The scale-free distribution of hubs in the protein universe suggests that a set of specific statistical mechanics models, such as the self-organized criticality model, can potentially identify the principal driving forces of molecular evolution. We also find a gatekeeper protein domain, removal of which partitions the largest cluster into two large sub-clusters. We suggest that the loss of such gatekeeper protein domains in the course of evolution is responsible for the creation of new fold families.Comment: 14 pages, 3 figure

    Expression of Fungal Cutinase and Swollenin in Tobacco Chloroplasts Reveals Novel Enzyme Functions and/or Substrates

    Get PDF
    In order to produce low-cost biomass hydrolyzing enzymes, transplastomic lines were generated that expressed cutinase or swollenin within chloroplasts. While swollenin expressing plants were homoplasmic, cutinase transplastomic lines remained heteroplasmic. Both transplastomic lines showed interesting modifications in their phenotype, chloroplast structure, and functions. Ultrastructural analysis of chloroplasts from cutinase- and swollenin-expressing plants did not show typical lens shape and granal stacks. But, their thylakoid membranes showed unique scroll like structures and chloroplast envelope displayed protrusions, stretching into the cytoplasm. Unusual honeycomb structures typically observed in etioplasts were observed in mature chloroplasts expressing swollenin. Treatment of cotton fiber with chloroplast-derived swollenin showed enlarged segments and the intertwined inner fibers were irreversibly unwound and fully opened up due to expansin activity of swollenin, causing disruption of hydrogen bonds in cellulose fibers. Cutinase transplastomic plants showed esterase and lipase activity, while swollenin transplastomic lines lacked such enzyme activities. Higher plants contain two major galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), in their chloroplast thylakoid membranes that play distinct roles in their structural organization. Surprisingly, purified cutinase effectively hydrolyzed DGDG to MGDG, showing alpha galactosidase activity. Such hydrolysis resulted in unstacking of granal thylakoids in chloroplasts and other structural changes. These results demonstrate DGDG as novel substrate and function for cutinase. Both MGDG and DGDG were reduced up to 47.7% and 39.7% in cutinase and 68.5% and 67.5% in swollenin expressing plants. Novel properties and functions of both enzymes reported here for the first time should lead to better understanding and enhanced biomass hydrolysis
    corecore