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Abstract

Although lipases are widely applied for the stereospecific resolution of racemic mixtures of esters, the atomic details
of the factors that are responsible for their stereospecificity are largely obscure. We determined the X-ray structures
of Pseudomonas cepacia lipase in complex with two enantiopure triglyceride analogues, that closely mimic natural
substrates. This allowed an unambiguous view of how the two wings of the boomerang-shaped active site
accommodate the acyl and alcohol parts of the triglyceride. The binding groove for the hydrophobic sn-3 fatty acid
chain is large and hydrophobic. The cleft for the alcohol moiety is divided in two parts, one tightly binding the sn-2
acyl chain with hydrophilic and hydrophobic interactions, the other more weakly binding the sn-1 fatty acid. The
enantioselectivity of Pseudomonas cepacia lipase seems therefore to be predominantly determined by the size and
interactions of the sn-2 chain and by the size of the sn-3 chain. © 1998 Elsevier Science Ireland Ltd. All rights
reserved.
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1. Introduction

Over the years the use of enzymes as biodegrad-
able and stereospecific catalysts has been increas-
ing significantly, with world-wide sales volumes of
industrial enzymes expected to be doubling in the
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next 10 years (Godfrey and West, 1996). Seventy
five percent of the enzymes of industrial interest
are hydrolases. After proteases and carbohy-
drases, lipases (E.C. 3.1.1.3) have the third largest
sales volume. Their major application is the hy-
drolysis of fat stains in laundry, but they are also
extensively used to synthesize a wide variety of
esters, or to hydrolyze esters other than triglyce-
rides (Theil, 1995). For example, lipases are used
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to stereospecifically hydrolyze ester bonds of com-
pounds such as acetyl-arylpropionic acid esters,
which are precursors for the nonsteroidal anti-
inflammatory agents naproxen and ibuprofen
(Bando et al., 1997).

To tailor lipases for specific applications knowl-
edge of their three-dimensional structures and the
factors that determine their regio- and enantiospe-
cificity are essential. Crystal structure determina-
tions of a number of lipases and related esterases
(Sussman et al., 1988; Brady et al., 1990; Winkler
et al., 1990; Schrag et al., 1991; Martinez et al.,
1992; Grochulski et al., 1993; Noble et al., 1993;
van Tilbeurgh et al., 1993; Uppenberg et al., 1994;
Lang et al., 1996; Kim et al., 1997; Schrag et al.,
1997) have shown that these enzymes share the
folding pattern of the «/f hydrolases (Ollis et al.,
1992), with an active site consisting of a Ser—His—
Asp/Glu catalytic triad.

Subsequent structural investigations concerned
the catalytic mechanism of lipases. Lipolytic en-
zymes are characterized by their drastically in-
creased activity when acting at the lipid-water
interface of micellar or emulsified substrates
(Desnuelle, 1972), a phenomenon called interfa-
cial activation. This increase in enzymatic activity
is triggered by structural rearrangements of the
lipase active site region, as witnessed from crystal
structures of lipases complexed with small transi-
tion state analogues (Brzozowski et al., 1991,
Derewenda et al., 1992; van Tilbeurgh et al.,
1993). The movement of a single helix (Brzo-
zowski et al., 1991; Derewenda et al., 1992), or
two helices (Kim et al., 1997; Schrag et al., 1997),
as well as a loop region (Grochulski et al., 1994b)
exposes a large hydrophobic surface that is pre-
sumed to interact with the lipid interface. Another
feature shown by all members of the «/f hydro-
lase superfamily is the presence of an oxyanion
hole, which stabilizes the transition state via hy-
drogen bonds with at least two main chain nitro-
gen atoms.

Further research on the action of lipases was
directed towards the identification of the binding
regions of the acyl and alcohol portions of the
substrate and the rationalization of the observed
enantioselectivity of various lipases. The X-ray
structures of Rhizomucor miehei lipase complexed

with a C6 phosphonate inhibitor (Derewenda et
al., 1994), of Candida rugosa lipase with a long
sulfonyl chain (Grochulski et al., 1994a), of the
human pancreatic lipase/colipase complex cova-
lently inhibited by the two enantiomers of a Cl1
alkyl chain phosphonate (Egloff et al., 1995) and
of porcine pancreatic lipase covalently inhibited
by ethylene glycol monooctylether (Hermoso et
al., 1996) represent important steps to mimic the
natural tetrahedral intermediates. However, none
of those compounds resembled a true triglyceride.
A first structural view of lipase stereoselectivity
towards secondary alcohols was obtained by Cy-
gler et al. (1994) who succeeded in complexing
(R)- and (S)-menthyl ester transition state ana-
logues to Candida rugosa lipase. In the fast-react-
ing, (R)-enantiomer a hydrogen bond is present
between the alcohol oxygen of the substrate and
the NE2 atom of the active site histidine. This
hydrogen bond is absent in the slow-reacting,
(S)-enantiomer and therefore it was suggested
that this hydrogen bond would be responsible for
the stereospecificity of the enzyme. In contrast,
Uppenberg et al. (1995) carried out X-ray and
modeling studies on Candida antarctica type B
complexed with a long-chain polyoxyethylene de-
tergent. They found from molecular dynamics
calculations that the hydrogen bond between sub-
strate and active site histidine, first found by
Cygler et al. (1994), is also present in C. antarctica
lipase, but not only in the fast reacting (R)-enan-
tiomer but also in the slow reacting (5)-enan-
tiomer. Therefore those authors concluded
that the enzyme’s enantioselectivity cannot simply
be explained by the presence or absence of
this hydrogen bond. Finally Longhi et al. (1997)
made a complex of cutinase, a small, non inter-
facially active lipolytic enzyme, with an enantiop-
ure triglyceride analogue with three C4 alkyl
chains, Rc-(Rp, Sp)-1,2-dibutylcarbamoylglycero-
3-O-p-nitrophenyl butylphosphonate (TC4, (Man-
nesse et al., 1995)). Although this inhibitor
was expected to reveal the stereospecific substrate
interactions with the protein, it unfortunately was
bound in the active site in an exposed position,
with the alkyl chains not interacting with any
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amino acid residues of the enzyme. Thus, despite
all this work, there is not yet an agreement on the
factors that are responsible for the stereospecific-
ity of these lipases.

Among the bacteria that secrete lipases the
members of the family of Pseudomonadaceae
(Gilbert, 1993) show distinct differences in regio-
and enantioselectivity (Rogalska et al., 1993), de-
spite a high amino acid sequence homology. In
addition these lipases are widely used in industry,
especially for the production of chiral chemicals
which serve as basic building blocks in the synthe-
sis of pharmaceuticals, pesticides and insecticides
(Theil, 1995). Rogalska et al. (1993) found that
the lipase from Chromobacterium viscosum (which
is identical to the Pseudomonas glumae lipase
(Taipa et al., 1995)) reacts unspecifically (sn-3
(R)/sn-1 (S)) with trioctoin, whereas the lipases
from Pseudomonas cepacia (PCL) and Pseu-
domonas aeruginosa (Jaeger et al., 1994) are abso-
lutely specific for sn-1 fatty acid chains of natural
substrates.

To resolve how a triglyceride binds in the active
site and to determine the factors which are re-
sponsible for the stereospecificity of Pseudomonas
lipases we have determined the X-ray structures of
PCL complexed with the TC4 transition state
analogue of Mannesse et al. (1995), as well as
with an analogue of medium alkyl chain length,
Rc-(Rp,Sp)-1,2-dioctylcarbamoyl-glycero-3-O-p-
nitrophenyl octylphosphonate (TC8). These com-
pounds are enantiopure at the sn-2 position, but
are racemic at the phosphorous atom. Our struc-
tural results allow us to describe in detail all the
interactions between enzyme and triglyceride ana-
logues and the properties of the alkyl binding
pockets. This knowledge allows the rationaliza-
tion of the stereospecificity of various ho-
mologous lipases.

2. Experimental procedures

The lipase from Pseudomonas spec. ATCC
21808 (recently renamed as Burkholderia cepacia)
is identical to the lipase from PCL. It was ob-
tained from the American Type Culture Collec-
tion (Rockville, MD) and purified as described

previously (Kordel et al., 1991). Preparation of
the complexes with TC4 and TCS, co-crystalliza-
tion and structure elucidation will be published
elsewhere (Lang et al., 1998). The PCL-TC4 com-
plex was crystallized at pH 8.5 with two molecules
in the asymmetric unit, whereas the PCL-TCS8
complex forms crystals at pH 4 with one molecule
per asymmetric unit. The diffraction limit of the
two crystal forms is different: the PCL-TC4 com-
plex diffracts to 1.75 A and the PCL-TC8 com-
plex to 2.9 A. The difference in the diffraction
limit might be caused by the crystal packing and/
or the pH of crystallization. The structure elucida-
tion was done in both cases by molecular
replacement using AMoRe (Collaborative Com-
putational Project Number 4, 1994), using native
PCL (PDB entry 3LIP (Schrag et al., 1997)) as the
starting model (Table 1). Initial (2Fo—Fc) and
(Fo—Fc) maps showed clear electron density con-
nected to the side chain of the catalytic Ser 87 in
each molecule, indicating the presence of a cova-
lently bound phosphonate inhibitor. Only the Sp
enantiomer of both the TC4 and TCS8 inhibitor
could be fitted into the electron density map,
indicating that only one enantiomer at the phos-
phorous atom of the inhibitors had reacted.

3. Results and discussion
3.1. The PCL-TC4 complex

The PCL-TC4 complex crystallizes in space
group P2, with two molecules in the asymmetric
unit. In both molecules, no density was observed
for the N-terminal residue, Ala 1, which was
excluded from the model. The overall structure of
both molecules of the PCL-TC4 complex is very
similar to that of the native P. cepacia lipase
(Protein Data Bank entry 3LIP), as indicated by
the low Ca root-mean square (r.m.s.) difference of
0.39 A between both non-crystallographic symme-
try-related molecules and the 3LIP coordinates
(Table 2). The final 1.75 A model did not reveal
any differences in the amino acid sequences of the
lipases from Pseudomonas spec. strain ATCC
21808 and PCL.
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Table 1

Results of the molecular replacement (data between 4 and 10 A)

o s y tl 2 t3 CC R-factor

Pseudomonas cepacia lipase-TC4 complex

Rotation (°) 23.6 45.5 10.1

Translation 0.26 0.0 0.27 0.64 0.35

Refined 24.9 46.3 9.1 0.26 0.0 0.25 0.69 0.33
Pseudomonas cepacia lipase-TC8 complex

Rotation (°)

Molecule 1 49.2 156.5 74.0

Molecule 2 130.8 23.5 253.9

Translation

Molecule 1 0.24 0.0 0.49

Molecule 2 0.26 0.0 0.01 0.82 0.35

Refined

Molecule 1 48.7 157.2 74.0 0.24 0.0 0.49

Molecule 2 128.3 23.5 255.9 0.26 0.0 0.01 0.84 0.33

The two protein molecules in the asymmetric
unit are related by a 2-fold axis (Fig. 1a). Several
water molecules are present in the interface be-
tween the two molecules, mediating hydrogen
bonds between them. The most conspicuous
residue in this interface is Gln 191. Its OE1 atom
makes a direct hydrogen bond to the other
molecule (Gln 191 OEI... 2.76 A... NH 198 Thr),
while its NE2 atom is part of a contact via a
bridging water molecule (Fig. 1b). As a conse-
quence of the close contacts between the two
molecules the antiparallel part of f-strand 8
(residues 196-198, Schrag et al. (1997)) has

Table 2
Interactions of water molecules in the interface between the
non-crystallographically related molecules in the PCL-TC4
complex

Thr D192 CO 274 A W562 273 A CO EI82 Ala
AlaDIS2 CO 2.68 A V565 278 A CO E192 Thr
Gln E191 NE2 298 A W568 273 A OGI D19

Thr
265A OGI D198
Thr
Gln D191 299 A V571 2.62A OGI E198 Thr

NE2 .
276 A OGlI E196 Thr

Thr D198 CO 250 A W671 3.14 ,:A OEI E191 Gln
243 A CO EI89 Ser

shifted somewhat and the r.m.s. difference of Ca-
positions compared with those in the native struc-
ture is more than 1.0 A in this region. This
conformational flexibility is probably facilitated
by the presence of several glycine residues in this
region.

Like native PCL the active site of the TC4
complex is in the open conformation. The hydro-
phobic substrate binding site is made up of side
chains in the loop formed by residues 228 to 237
and of side chains of the putative lid helix «5
(residues 142 to 149, Schrag et al. (1997)). The
open conformation is stabilized by crystal con-
tacts of this 5-helix to a symmetry related o 5-he-
lix, interacting via the side chains of Phe 142, Val
145 and Leu 149. This is different from other
lipases, where the large hydrophobic surfaces,
which are created around the active sites when the
lids open, are orientated face-to-face to each
other, thereby locking the symmetry related lids in
the open conformation (Brzozowski et al., 1991;
Grochulski et al., 1993; Lawson et al., 1994;
Longhi et al., 1997).

To our surprise only the butyl phosphonate
part (sn-3 moiety) of the TC4 inhibitor was visible
in the electron density; no density was present for
the glycerol moiety with the two C4-alkyl chains.
As no indications were present for even weak
density for the glycerol moiety extending from the
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Fig. 1. (a) Stereo-figure of the Cua traces of the two non-crystallographic related molecules of the PCL-TC4 complex in the
asymmetric unit. The atoms of the inhibitors are shown as filled spheres. The Ca®>* ion is represented as a black ball located
adjacent to the active site pocket. (b) Stereo-figure of a close-up of the interface between the two molecules of the PCL-TC4 complex
related by non-crystallographic symmetry. Water molecules are indicated by black crosses. The amino acid side chains involved in

intermolecular contacts are high-lighted (see Table 2).

phosphonate group, this suggests that the glycerol
phosphonate ester has been cleaved. Since the
PCL-TC4 crystals grew very slowly (30 days), this
could easily have happened during the crystalliza-
tions. Phosphonate cleaving reactions have been
observed before in serine proteases, where a nu-
cleophilic substitution of a phosphonate ester
bond by the active site serine can occur (Kovach
et al., 1991; Bencsura et al., 1995). Nevertheless,
the butyl phosphonate moiety could be unam-
biguously positioned in the electron density. It
defines the acyl pocket of the enzyme. The oxyan-
ion hole is occupied by one of the phosphorous
oxygen atoms, which is 2.6 A from the NH group
of Leu 17 and 2.8 A from the NH group Gln 88.
The C4 atom of the inhibitor contacts the CB

atom of Leu 17 (4.1 A) and the C5 and C6 atoms
are in close van der Waals contact to Val 266 (4.0
and 3.9 A, respectively).

3.2. The PCL-TCS8 complex

The PCL-TCS8 complex crystallizes in the mon-
oclinic space group C2 with one molecule per
asymmetric unit. The enzyme is in the open con-
formation, similar to that observed for the PCL-
TC4 complex. Density for the complete TCS8
inhibitor is visible (Fig. 2). The substrate binding
region of PCL has good density for the loop
region (228—-237), but less and weaker interactions
for the two interacting symmetry related o5
helices.
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The presence of the complete TCS8 inhibitor
allows us to unambiguously define the substrate
binding mode of P. cepacia lipase. The
boomerang shaped active site (Kim et al., 1997,
Schrag et al., 1997) is divided into a large hydro-
phobic groove in which the acyl chain snugly fits
and a part that embeds the inhibitor’s alcohol
moiety. The alcohol binding pocket can be subdi-
vided into a mixed hydrophilic/hydrophobic cleft
for the sn-2 moiety of the substrate and a smaller
hydrophobic groove for the sn-1 chain. The
bound lipid analogue assumes the bent tuning
fork conformation preferred by lipids at an inter-
face (Pascher, 1996). As the sn-2 pocket provides
the most intimate interactions with the substrate,
we propose that this pocket is the one that pre-
dominantly determines the enzyme’s stereoprefer-
ences. A further pocket constitutes the oxyanion
hole. It is occupied by a phosphonate oxygen,
which has the same interactions as in the TC4
complex.

Superposition of the TC8 conformation in PCL
with the cutinase-TC4 complex (Longhi et al.,
1997) shows that, except for the oxyanion hole,
the two complexes do not very well match. This is
probably caused by the absence in cutinase of
interactions of the acyl chains with the enzyme
(Fig. 3).

3.3. Enantiomeric selectivity

PCL is one of the most widely used enzymes for
the enantiomeric resolution of esters of secondary

Fig. 2. SigmaA weighted (Fo—Fc)—electron density map of
the PCL-TC8 complex calculated without contributions of the
inhibitor to the Fc’s and phases. The electron density defines
the various active site pockets that are responsible for the
enzyme’s stereopreferences.

Fig. 3. Superposition of Cu traces of the PCL-TC8 complex
(thick lines) with the cutinase-TC4 complex (thin lines). The
binding modes of the inhibitors do not very well agree, proba-
bly because the acyl chains of the inhibitor in the cutinase-TC4
structure do not contact any protein residues. The Ca” ™" ion is
represented as a single black sphere.

alcohols (Theil, 1995). It has a preference for the
Rc-trioctyl compound (R--TCS8) over the Sc-tri-
octyl compound (S--TCB8): it is inhibited seven
times faster by R--TC8 than by S--TC8 (Lang et
al., 1998). This demonstrates that also the less
preferred enantiomer can productively be bound
in the active site. Since no structure is available of
a PCL-S.-TC8 complex, we modeled the Sc
compound in the active site of PCL by a simple
substituent exchange at the glycerol C2 atom po-
sition in the PCL— R-—TC8 complex. In this mod-
eled PCL-S-—TC8 complex the acyl chain bound
to the primary hydroxyl group of the glycerol
moiety clashes with the hydrophobic side chains
of Leu 287 and Ile 290. To prevent this unfavor-
able interaction either the amino acid side chains
have to be moved out of the way or the substrate
should undergo a conformational change, for in-
stance via a rotation about a single C—C bond.
Hirose et al. (1995) have carried out site-di-
rected-mutagenesis experiments to probe the im-
portance of various amino acid residues for the
stereoselectivity of PCL. They succeeded in
changing the enzyme’s enantioselectivity from an
Rc to Sc specificity by introducing a combination
of three mutations, Val266Leu, Leu287Ile and
Phe221Leu. Val 266 is located at the entrance of
the acyl pocket (sn-3 pocket), while Leu 287 is at
the beginning of the sn-2 pocket. Phe 221 is at the
surface of the enzyme, about 20 A away from the
inhibitor. While the Leu287Ile and Val266Leu
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substitutions can be envisaged to affect the size
and width of the sn-2 and sn-3 pockets, respec-
tively, Phe 221 seems too far away to directly
influence the enzyme’s stereospecificity. Neverthe-
less, the Phe221Leu mutation on its own was
reported to slightly decrease the enzyme’s enan-
tioselectivity (Hirose et al., 1995). Clearly, further
research is required to elucidate the role of Phe
221 as an enantioselectivity determining factor.

In the past, it has been found that PCL shows
the largest enantioselectivity if one of the sub-
stituents differs significantly in size from the other
(Kazlauskas et al., 1991). This observation can
now be rationalized, the enzyme contains a large
hydrophobic groove in which the sn-3 acyl chain
fits, a mixed hydrophilic/hydrophobic cleft for the
sn-2 moiety of the substrate and a smaller hydro-
phobic groove for the sn-1 chain. The differences
in size and the hydrophilicity/hydrophobicity of
the various pockets determine the enzyme’s enan-
tio- and regiopreferences.
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