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ABSTRACT 
Understanding the design of the universe of protein structures may provide insights into 

protein evolution. We study the architecture of the protein domain universe, which has been 
found to poses peculiar scale-free properties (Dokholyan et al., Proc. Natl. Acad. Sci. USA 99: 
14132-14136 (2002)). We examine the origin of these scale-free properties of the graph of 
protein domain structures (PDUG) and determine that that the PDUG is not modular, i.e. it does 
not consist of modules with uniform properties. Instead, we find the PDUG to be self-similar at 
all scales. We further characterize the PDUG architecture by studying the properties of the hub 
nodes that are responsible for the scale-free connectivity of the PDUG. We introduce a measure 
of the betweenness centrality of protein domains in the PDUG and find a power-law distribution 
of the betweenness centrality values. The scale-free distribution of hubs in the protein universe 
suggests that a set of specific statistical mechanics models, such as the self-organized criticality 
model, can potentially identify the principal driving forces of molecular evolution. We also find 
a gatekeeper protein domain, removal of which partitions the largest cluster into two large sub-
clusters. We suggest that the loss of such gatekeeper protein domains in the course of evolution 
is responsible for the creation of new fold families. 
 
 



INTRODUCTION 
The principles of molecular evolution remain elusive despite fundamental breakthroughs 

on the theoretical front 1-5 and a growing amount of genomic and proteomic data, over 23,000 
solved protein structures 6 and protein functional annotations 7-9. Like in other sciences, we can 
identify specific observables intrinsic to molecular evolution. In the context of protein sequence-
structure-function relationships, graph-theoretical approaches proved to be effective to capture 
the nature of these relationships 4,10-14. Thus, various network descriptors can be used as a choice 
of observables to study molecular evolution. Such descriptors are, for example, distributions of 
family members in protein families, connectivity of proteins in such networks and cliquishness. 
Theoretical efforts then can be directed to explain such descriptors.  

Dokholyan et al. 10 proposed to study protein structural relations by constructing protein 
domain universe graphs (PDUG), in which nodes correspond to protein domains and edges 
connect pairs of nodes that correspond to structurally similar protein domains. The distribution of 
populations in protein families was explained from the theory of random graphs that requires no 
fitting parameters and does not rely on any evolutionary mechanisms. A peculiar imprint of 
evolution on protein structural space that, we believe, is non-trivial is the connectivity of protein 
domains in PDUG, the distribution ( )P k of connectivity k is scale-free: 

 ( )P k k µ−∝  (1) 
where 1.6PDUGµ ≈ . In contrast the distribution of connectivity in random graphs is 
Gaussian: 2 2

0( ) exp( ( ) / 2 )RGP k k k σ∝ − − . Our quest to understand the mosaic structure of PDUG 
started from developing a simplified statistical mechanics model of protein domain evolution 
based on point mutations and gene duplication 10, which yielded the observed distribution Eq.(1) 
and exponent 0 1.6PDUGµ µ≈ ≈ . 

The success of a statistical mechanics model to explain the connectivity of PDUG 
proposed in Ref. 10 is undermined by its simplicity. Moreover, the model proposed in Ref. 10 does 
not take into account evolutionary pressure at the physical and biological levels, such as 
evolutionary selection of mutated proteins to be stable, to fold in a biologically reasonable time, 
and, possibly 15, to be biologically active. To test the rules of the model in Ref. 10, Deeds et al. 16 
selected 3,500 conformations (the size of PDUG)  out of 105 completely enumerated  compact 
structures of lattice 27-mer and showed that using selection rules similar to those proposed in 
Ref. 10, the distribution of connectivities ( )P k  of 27-mers obeys Eq.(1) with the same exponent 

27 1.6mer PDUGµ µ≈ ≈ . 
From a physical point of view, England and Shakhnovich 17 suggested a link between the 

designability of a given fold, i.e. the number of sequences that are thermodynamically stable  in 
the fold, and a structural characteristic of this fold – traces of even powers of a fold’s contact 
matrix. Such a link unveiled a mechanism for thermophilic adaptation in bacterial genomes 18: 
thermophilic proteins predominantly share higher designability folds than mesophilic ones. The 
important role of evolutionary pressure in preserving protein thermodynamic stability was 
emphasized by Dokholyan and Shakhnovich 15. Tiana et al. 19 developed an evolutionary model 
of a lattice 36-mer in which stable protein structures are explicitly selected in Monte Carlo 
folding simulations. This selection procedure leads to a correlation between fold population and 
designability 17.  

Here we dissect the PDUG architecture from the perspective of network organization. We 
ask whether the PDUG connectivity is the result of a specific distribution of clusters with 
homogeneous connectivity distribution within these clusters (modularity). Alternatively, the 



connectivity distribution may be identical, or self-similar, to the PDUG clusters and the entire 
PDUG. The scale-free organization of the PDUG has an important implication: it suggests a 
disparity in node connectivities over a broad range, which in turn implies that a few nodes are 
much more connected than others. These former nodes are hubs that are crucial to the small-
world connectivity of the network. The question is then: what are those “central” hub nodes? To 
identify these hubs and characterize the network architecture, we employ a measure of the node 
centrality20 in graph theory.  

 
IS THE PDUG MODULAR? 

The scale-free connectivity distribution in the PDUG may arise from two scenarios that 
imply different PDUG architectures. In the first scenario, the PDUG network is modular, i.e. the 
PDUG consists of clusters, in which the distribution of connectivities is Gaussian, but the 
distribution of such clusters is scale-free. In this scenario the connectivity distributions Pc(k) in 
the PDUG clusters c is Gaussian: 
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where ck  and cσ are the average the standard deviation of the number of edges per node in the 
cluster c. For simplicity, let us also assume that the standard deviation is the same for all clusters, 
i.e. c constσ σ≡ = . Let ( )c cF k denote the distribution of clusters in the PDUG with a given 

average number of nodes ck . The resulting distribution P(k) is a convolution of these 
distributions: 

 ( )( ) ( )c c c
c

P k P k F k=∑ . (3) 

Then, Eq. (1) can be obtained if ( )c cF k  satisfies the following relation: 
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The left hand side of Eq. (4) is a continuous form of the right hand side of Eq. (3). Eq. (4) is an 
integral equation, which in the limit of large k has asymptotic solution 

 ( )cF x x γ−∝ , (5) 
where γ µ= . Eq. (5) implies that the scale-free architecture of the PDUG results from the 
heterogeneous distribution of clusters, which, in turn, have a specific distribution with finite 
moments, such as averages and standard deviations. 

In the second scenario, the connectivity distribution remains scale-free in PDUG clusters, 
i.e. 

 ( )cP k k γ−∝ , (6) 
in which case γ µ= . We test whether the PDUG is modular by comparing the connectivity 
distributions of the PDUG sub-clusters and the PDUG. Thus, we ask whether the PDUG is 
modular or self-similar at all scales. 

We compute the distributions ( )cP k  for three largest clusters in the PDUG and find that 
these distributions are not Gaussian (Fig. 1a). These distributions are broad: the connectivity 
distributions for the largest (m1=123 nodes) and the third largest clusters reach maximal 
connectivity k=26 (m3=53 nodes), while that for the second largest cluster reach maximal value 



of k=61 (m2=81 nodes). The connectivity distribution of the second largest cluster is almost 
uniform for all values of k, while that for the first and the third largest cluster exhibit large 
dispersion in k. Fig. 1a suggests that the connectivity distributions posited in Eq. (2) are 
inconsistent with our observations, which means that the PDUG is, in fact, not modular. 
However, in order to provide a more quantitatively definite answer, we study the first and the 
second moments of the distributions Eq. (2) over various PDUG clusters. 

Deciphering the distribution of values that follow power-law statistics is a challenging 
task due to the divergent nature of the power-law distribution: no matter what the value of the 
exponent is (e.g. µ in Eq. (1)), some moments of this distribution always diverge. The smaller the 
exponent µ, the lower the moments diverge. Since natural systems are finite, such divergence 
comes as a finite size effect, i.e. the distribution is effectively modified by a truncation function 
of, for example, exponential origin21: 

 ( )0
( ) k

kP k k fµ−∝ , (7) 

where k0 is a cut-off value of the P(k) distribution, which scales with the number of nodes in the 
system as some function of N. The leading term of the expansion of the 0 ( )k N  function is a 
power-law function 0k Nν∝ .  

In power-law distributions, the moments depend on the system size N. From Eq. (7) it 
follows, that the average and the standard deviation depend on N as 

 2 ( 2)
0k k Nµ ν µ− + − +∝ ∝ , (8) 
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where α is some constant. From Eqs. (8) and (9):  
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In contrast, the average and the standard deviation in a Gaussian distribution are not dependent 
on the system’s size. 

We find that both k and σ  scale (almost) linearly with N and, accordingly, σ scales 
linearly with k (Fig. 1b). Such behavior is consistent with Eqs. (7) – (10) only when exponents 

1µ ν= = . In which case k N∝ , Nσ ∝ , and kσ ∝ . This means that (i) the PDUG is not 
modular but self-similar at all scales, (ii) the observed exponent 1.6PDUGµ ≈ in Ref. 10 is an 
“effective” exponent due to the finite size effects that we cannot separate from the true power-
law regime, and (iii) the true PDUG exponent is 1true

PDUGµ = .  
This exponent is also consistent with that of the distribution of cluster populations P(N), 

found10 to scale as a power-law with the exponent 1.5. The distribution of the averages ( )aP k  is 
expected to scale the same as P(N) since ( ) ( ) ( )dN

a dkP k P N P N= ∝ . Although we find the 
power-law exponent of ( )aP k  to be 2 (Fig. 1c), the difference is believed to come from the finite 
size scaling of the ( )aP k  distribution. 

The value 1true
PDUGµ =  of the power-law exponent has profound implications on the type of 

models that explain processes resulting in such distributions 22-25. One such model is a model of 
self-organized criticality (SOC) proposed by Bak et al. 22. In this model, the system that is out of 
equilibrium self-organizes (no tunable model parameters are required) into a dynamic unstable 



attractor. Such a model may be applicable to evolution of proteins: a family of proteins may start 
via gene duplication and point mutations as a structural derivative A of a protein B representing 
some other family. Next, protein A generates a family via gene duplication and point mutations  
15 while diversification is favored by the selection process. Protein A serves as a hub for a new 
family. The fluctuations in selection processes may result in diverse connectivities between 
proteins. 

The scale-free connectivity distribution may also have a structural origin: some mutations 
have little effect on protein structure, while others drastically alter the three-dimensional protein 
conformation. Unfortunately, large-scale predictions of the effects of mutations on protein 
structures are not currently feasible. Thus, it is difficult to probe this scenario in silico.  
 
BETWEENNESS CENTRALITY 

The hubs play an important role in the network architecture. These special nodes are 
central to a network as a large number of geodesics, or minimal path, pass through these nodes. 
To characterize these hubs we employ a measure of the node betweenness centrality proposed by 
Freeman 20 (Methods). 

The PDUG was built in Ref.10 by first constructing a weighted graph consisting of nodes 
representing protein domains, edges connecting those nodes that are structurally similar, and 
weights that are a measure of protein domain structural similarity. The measure of structural 
similarity are DALI26 Z-scores. The original weighted graph is then partitioned by removing all 
edges that have Z-scores smaller than a specific Zmin. After partitioning, the weights are discarded 
and the final graph is denoted as PDUG. The value of Zmin is unambiguously chosen so that it 
corresponds to the midpoint of a transition of the dependence of the number of nodes in the 
largest cluster as a function of Z10. It was found that Zmin=9. The largest cluster of PDUG mostly 
represents the Rossman fold and contains 123 protein domains (Fig. 2b), the second largest 
cluster represents the TIM-barrel fold and contains 81 protein domains (Fig. 2c), and the third 
largest cluster represents the Immunoglobulin-like beta-sandwich and contains 53 protein 
domains (Fig. 2d). 

We determine the betweenness of each protein domain in the three largest clusters (e.g. 
Fig. 3a). We find that for these three clusters the distributions of the betweenness are highly 
heterogeneous and are well-fit by a power law function: 

 ( )BP B B η−∝ , (11) 
where 1η ≈ . Strikingly, the exponent η  is the same as true

PDUGµ . In contrast, the betweenness 
distribution ( )RG

BP B of random graphs (Methods) exhibits distinctly different behavior (Fig. 3b): 
 ( )( ) expRG B

BBP B ∝ − , (12) 

where 42 10B ≈ ×  is the average value of betweenness in random graphs. In the case of random 
graphs, we generally obtain larger clusters than in the PDUG, which explains the larger values of 
B in random graphs than in the PDUG (Fig. 3). 

The scale-free distribution of betweenness in the PDUG has very non-trivial implications 
on our understanding of protein evolution. In one scenario, in the course of evolution a central 
node “gives birth” (through gene duplication and point mutations) to a world of protein domains. 
Evolution proceeds by such subsequent formation of these central nodes and their corresponding 
worlds. These hubs exist on all scales, consistent with the self-similar PDUG architecture. The 
scale-free “hub” architecture of the PDUG may be responsible for the connectivity properties of 
the protein universe. However, due to the lack of a simple relationship between the betweenness 



of a node and its connectivity, it is challenging to mathematically relate corresponding 
distributions P(k) and PB(B). 

Interestingly, in the case of the largest cluster (Fig. 2a), three protein domains 1cex_1 
(cutinase from Fusarium solani), 1qpzA_5 (N-terminal domain purine repressor (PurR) from 
Escherichia coli), and 1gca_2 (galactose/glucose-binding protein from Salmonella typhimurium) 
have the largest betweenness among all domains belonging to the largest cluster: approximately 
28% of the shortest paths pass through these three nodes. The domain 1cex_1 is a “gatekeeper” 
to a large sub-cluster of the largest cluster: removal of this node will result in separation of the 
two largest sub-clusters (Fig. 2b). It is possible that the disappearance of such gatekeeper protein 
domain results in the formation of new protein families. Therefore, uncovering the evolutionary 
origin of this domain may offer insights into formation of protein domain worlds. 

Cutinases (e.g. 1cex_1) are hydrolytic enzymes that degrade cutin, a polyester composed 
of hydroxy and epoxy fatty acids, that serves as a protective shield of aerial plants against 
pathogens entry27. Cutin degradation is the first step of plant infection and it is exploited by fungi 
that express cutinase to invade plants. This unique mechanism of plant protection and infection 
may trace back to the very origin of plants. Co-evolution of plants and pathogens may have 
spurred an observed spread of domains in the largest cluster of the PDUG. 

 
 
CONCLUSION 

Insights into the evolution of proteins and, further, of organisms, may likely come from 
an understanding of the architecture of protein structural space 4,28-32 rather than that of sequence 
space 10,15. We, therefore, scrutinize the architecture of the PDUG that was found to have a scale-
free connectivity distribution. We find that the PDUG is not modular, i.e. it does not consist of 
modules with uniform properties, but rather is self-similar at all scales. We further find that the 
true power-law exponent 1true

PDUGµ =  rather than 1.6PDUGµ ≈ , as was previously determined10. The 
discrepancy between the true and effective exponents is postulated to be due to the finite size of 
the PDUG.  

We further characterize the PDUG architecture by studying the properties of the hub 
nodes that are responsible for the scale-free connectivity of the PDUG. The power-law 
distribution of the betweenness centrality of protein domains manifests the scale-free 
organization of PDUG. The scale-free architecture of the PDUG, especially the power-law 
exponent 1true

PDUGµ = , suggests that a set of specific statistical mechanics models, such as SOC, 
may explain such distributions. These models may provide insights into the most fundamental 
processes that exist in Nature and that guide the evolutionary course of proteins and organisms. 

We also find a gatekeeper protein domain 1cex_1, removal of which partitions the largest 
cluster into two large sub-clusters. We suggest that these gatekeeper protein domains, or the loss 
of them in the course of evolution, is responsible for the creation of new fold families. We argue 
that the origin of the gatekeeper domains may arise from co-evolution of organisms. 

 
 

METHODS 
Betweenness centrality measure 

Let { , }G V E= be an undirected unweighted graph, where V is a set of nodes and E is a 
set of edges. A path between nodes s and t is defined as a set of edges that connect nodes s œ V 
and t œ V on G, the length of which is determined as the number of edges on the path. The 



minimal path is defined as the path of minimal length. Let σst be the number of minimal paths 
between nodes s œ V and t œ V, and σssª1. Let σst(v) denote the number of minimal paths 
between nodes s œ V and t œ V that pass through the node v. The betweenness centrality B(v) is 
defined as 

 ( )( ) st

st

v

s t v V
B v σ

σ
≠ ≠ ∈

= ∑ .  (13) 

High betweenness of a node indicates that a large number of minimal paths pass through 
this node. The betweenness of a node v is therefore a measure of participation of this node in 
connectivity of the graph. We implement a fast algorithm for betweenness computation proposed 
by Brandes 33. In order to maintain the information on the actual values of B we do not normalize 
B to range between 0 and 1 as is often done. 
 
Construction of random graphs 

Random graphs are constructed by reshuffling the PDUG edges between randomly 
selected pairs of nodes. We perform the reshuffling operation 106 and 107 times and find that the 
distributions ( )RG

BP B  in both cases are almost identical, suggesting that reshuffling has 
effectively eliminated the PDUG architecture. 
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FIGURE CAPTIONS 
 
Figure 1. (a) The connectivity distributions Pc(k) of the three largest PDUG clusters consisting 
of 123, 81, and 53 members correspondingly. All of these three distributions have large first and 
second moments, which suggest that the underlying distributions are not Gaussian. (b) Scatter 
plots of three sets of data k versus N (circle), σ  versus N (square), and σ  versus k  (diamond). 
These three scatter plots are well fit by linear functions. The slopes, linear regression correlation 
coefficients, and their corresponding p-values for a power-law fit on a double logarithmic scale 
are correspondingly (slope ≈ 0.9, R ≈ 0.87, p ≈ 10-31), (slope ≈ 1.0, R ≈ 0.99, p ≈ 10-21), and 
(slope ≈ 1.0, R ≈ 0.98, p ≈ 10-21). The numbers of points in these fits are 179, 93, and 93, 
correspondingly. The difference in number of points is due to exclusion of points that feature 

0σ =  in σ  versus N, and σ  versus k  fits. The straight line with slope = 1 is drawn as a visual 
guide. The regression slopes ≈1 imply almost linear relations between fitted values: 0.9k N∝ , 

Nσ ∝ , and kσ ∝ . (c) The probability distribution of the average values of node connectivities 
in the PDUG clusters. The slope, linear regression coefficient, and the p-value are slope ≈ −2, R 
≈ −0.9, and p ≈ 0.01. The regression slopes imply the following relation between fitted values: 

2( )P k k −∝ . 
 
Figure 2. (a) The values of betweenness centrality of each individual node in the largest cluster 
of the PDUG. Three protein domains 1cex_1, 1qpzA_5, and 1gca_2, marked as red triangles, are 
most central to the largest PDUG cluster. (b), (c), and (d) The graph of representations of the 
first, the second and the third largest clusters correspondingly. A representative structure 
accompanies each of these graphs. In (b) we show the structures of the three protein domains 
1cex_1, 1qpzA_5, and 1gca_2. 
 
 
Figure 3. (a) The probability distributions of the betweenness centrality values of the PDUG 
nodes in the first (circle), the second (square), and the third (diamond) largest clusters on a 
double-logarithmic plot. All these distributions are similar and inversely proportional 
to 1( ) BBP B ∝ . The slopes, linear regression coefficients, and the p-values of the linear regression 
are correspondingly (slope = −1.1, R = −0.96, p = 10-4), (slope = −1.2, R = −0.92, p = 10-3), and 
(slope = −1.0, R = −0.95, p = 10-3). The straight line with the slope = −1 is drawn as a visual 
guide. The regression slopes imply the following relations between fitted values: 1.1( )BP B B−∝ , 

1.2( )BP B B−∝ , and 1.0( )BP B B−∝ . (b) The probability distributions of the betweenness centrality 
values of the random graph nodes in the largest cluster on semi-logarithmic plot. The slope, 
linear regression coefficient, and the p-value of the linear regression are correspondingly slope = 
−2µ104, R = −0.97, and p = 10-5. The regression slopes imply the following relation between 
fitted values: ( )4( ) exp / 2 10RG

BP B B∝ − × . 
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