2,378,887 research outputs found

    UHPLC-PDA-ESI-TOF/MS metabolic profiling and antioxidant capacity of arabica and robusta coffee silverskin: antioxidants vs phytotoxins

    Get PDF
    A deeper knowledge of the chemical composition of coffee silverskin (CS) is needed due to the growing interest in its use as a food additive or an ingredient of dietary supplements. Accordingly, the aim of this paper was to investigate the metabolic profile of aqueous extracts of two varieties of CS, Coffee arabica (CS-A), Coffee canephora var. robusta (CS-R) and of a blend of the two (CS-b) and to compare it to the profile of Coffee arabica green coffee (GC). Chlorogenic acids, caffeine, furokauranes, and atractyligenins, phytotoxins not previously detected in CS, were either identified or tentatively assigned. An unknown compound, presumably a carboxyatractyligenin glycoside was detected only in GC. Caffeine and chlorogenic acids were quantified while the content of furokauranes and atractyligens was estimated. GC and CS were also characterized in terms of total polyphenols and antioxidant capacity. Differences in the metabolites distribution, polyphenols and antioxidant capacity in CG and CS were detailed

    CS Lines Profiles in Hot Cores

    Full text link
    We present a theoretical study of CS line profiles in archetypal hot cores. We provide estimates of line fluxes from the CS(1-0) to the CS(15-14) transitions and present the temporal variation of these fluxes. We find that \textit{i)} the CS(1-0) transition is a better tracer of the Envelope of the hot core whereas the higher-J CS lines trace the ultra-compact core; \textit{ii)} the peak temperature of the CS transitions is a good indicator of the temperature inside the hot core; \textit{iii)} in the Envelope, the older the hot core the stronger the self-absorption of CS; \textit{iv)} the fractional abundance of CS is highest in the innermost parts of the ultra-compact core, confirming the CS molecule as one of the best tracers of very dense gas.Comment: 17 pages, 5 figures, 1 table, In press in Ap

    Cellulose, Chitosan, and Keratin Composite Materials. Controlled Drug Release

    Get PDF
    A method was developed in which cellulose (CEL) and/or chitosan (CS) were added to keratin (KER) to enable [CEL/CS+KER] composites to have better mechanical strength and wider utilization. Butylmethylimmidazolium chloride ([BMIm+Cl–]), an ionic liquid, was used as the sole solvent, and because the [BMIm+Cl–] used was recovered, the method is green and recyclable. Fourier transform infrared spectroscopy results confirm that KER, CS, and CEL remain chemically intact in the composites. Tensile strength results expectedly show that adding CEL or CS into KER substantially increases the mechanical strength of the composites. We found that CEL, CS, and KER can encapsulate drugs such as ciprofloxacin (CPX) and then release the drug either as a single or as two- or three-component composites. Interestingly, release rates of CPX by CEL and CS either as a single or as [CEL+CS] composite are faster and independent of concentration of CS and CEL. Conversely, the release rate by KER is much slower, and when incorporated into CEL, CS, or CEL+CS, it substantially slows the rate as well. Furthermore, the reducing rate was found to correlate with the concentration of KER in the composites. KER, a protein, is known to have secondary structure, whereas CEL and CS exist only in random form. This makes KER structurally denser than CEL and CS; hence, KER releases the drug slower than CEL and CS. The results clearly indicate that drug release can be controlled and adjusted at any rate by judiciously selecting the concentration of KER in the composites. Furthermore, the fact that the [CEL+CS+KER] composite has combined properties of its components, namely, superior mechanical strength (CEL), hemostasis and bactericide (CS), and controlled drug release (KER), indicates that this novel composite can be used in ways which hitherto were not possible, e.g., as a high-performance bandage to treat chronic and ulcerous wounds

    Projections in operator ranges

    Get PDF
    If \H is a Hilbert space, AA is a positive bounded linear operator on \cH and \cS is a closed subspace of \cH, the relative position between \cS and A^{-1}(\cS \orto) establishes a notion of compatibility. We show that the compatibility of (A,\cS) is equivalent to the existence of a convenient orthogonal projection in the operator range R(A1/2)R(A^{1/2}) with its canonical Hilbertian structure

    S=1/2 Kagome antiferromagnets Cs2_2Cu3MF_3MF_{12}$ with M=Zr and Hf

    Full text link
    Magnetization and specific heat measurements have been carried out on Cs2_2Cu3_3ZrF12_{12} and Cs2_2Cu3_3HfF12_{12} single crystals, in which Cu2+^{2+} ions with spin-1/2 form a regular Kagom\'{e} lattice. The antiferromagnetic exchange interaction between neighboring Cu2+^{2+} spins is J/kB360J/k_{\rm B}\simeq 360 K and 540 K for Cs2_2Cu3_3ZrF12_{12} and Cs2_2Cu3_3HfF12_{12}, respectively. Structural phase transitions were observed at Tt210T_{\rm t}\simeq 210 K and 175 K for Cs2_2Cu3_3ZrF12_{12} and Cs2_2Cu3_3HfF12_{12}, respectively. The specific heat shows a small bend anomaly indicative of magnetic ordering at TN=23.5T_\mathrm{N}= 23.5 K and 24.5 K in Cs2_2Cu3_3ZrF12_{12} and Cs2_2Cu3_3HfF12_{12}, respectively. Weak ferromagnetic behavior was observed below TNT_\mathrm{N}. This weak ferromagnetism should be ascribed to the antisymmetric interaction of the Dzyaloshinsky-Moriya type that are generally allowed in the Kagom\'{e} lattice.Comment: 6 pages, 4 figure. Conference proceeding of Highly Frustrated Magnetism 200
    corecore