246,461 research outputs found

    Buoyancy regulation and aggregate formation in Amoebobacter purpureus from Mahoney lake

    Get PDF
    Abstract The meromictic Mahoney Lake (British Columbia, Canada) contains an extremely dense layer of purple sulfur bacteria (Amoebobacter purpureus). The buoyant density of Amoebobacter cells grown in pure culture at saturating light intensity was significantly higher (1027–1034 kg m−3) than the density of lake water (1015 kg m−3). When stationary cultures were shifted to the dark, the gas-vesicle content increased by a factor of 9 and buoyant density decreased to 1002 kg m−3 within three days. A novel mechanism of cell aggregation was detected for the Mahoney Lake strain. Dense cell aggregates were formed after depletion of sulfide. Formation of aggregates was correlated with an increase in cell surface hydrophobicity. Cell aggregates could be disintegrated within less than 1 s by addition of sulfide or various thiol compounds. Mercaptanes with a branched structure in the vicinity of the terminal thiol group, compounds with esterified thiol groups (methylmercaptanes), reducing compounds lacking thiol groups and detergents did not influence aggregate stability. Cell aggregates disintegrated upon addition of urea or of proteinase K. Addition of various sugars had no effect on aggregation; this points to the absence of lectins. The results indicate that cell-to-cell adhesion in A, purpureus ML1 is mainly caused by a hydrophobic effect and includes a specific mechanism possibly mediated by a surface protein. Extrapolation of laboratory results to field conditions demonstrated that both regulation of buoyant density and formation of cell aggregates result in passive accumulation of cells at the chemocline and contribute to the narrow stratification of A. purpureus in Mahoney Lake

    Low-velocity collision behaviour of clusters composed of sub-mm sized dust aggregates

    Full text link
    The experiments presented aim to measure the outcome of collisions between sub-mm sized protoplanetary dust aggregate analogues. We also observed the clusters formed from these aggregates and their collision behaviour. The experiments were performed at the drop tower in Bremen. The protoplanetary dust analogue materials were micrometre-sized monodisperse and polydisperse SiO2_2 particles prepared into aggregates with sizes between 120~μ\mum and 250~μ\mum. One of the dust samples contained aggregates that were previously compacted through repeated bouncing. During three flights of 9~s of microgravity each, individual collisions between aggregates and the formation of clusters of up to a few millimetres in size were observed. In addition, the collisions of clusters with the experiment cell walls leading to compaction or fragmentation were recorded. We observed collisions amongst dust aggregates and collisions between dust clusters and the cell aluminium walls at speeds ranging from about 0.1 cm/s to 20 cm/s. The velocities at which sticking occurred ranged from 0.18 to 5.0 cm/s for aggregates composed of monodisperse dust, with an average value of 2.1 cm/s for reduced masses ranging from 1.2x10-6 to 1.8x10-3 g with an average value of 2.2x10-4 g. From the restructuring and fragmentation of clusters composed of dust aggregates colliding with the aluminium cell walls, we derived a collision recipe for dust aggregates (∼\sim100 μ\mum) following the model of Dominik \& Thielens (1997) developed for microscopic particles. We measured a critical rolling energy of 1.8x10-13 J and a critical breaking energy of 3.5x10-13 J for 100 μ\mum-sized non-compacted aggregates.Comment: 12 pages, 13 figure

    Physiology of purple sulfur bacteria forming macroscopic aggregates in Great Sippewissett Salt Marsh, Massachusetts

    Get PDF
    Abstract Purple bacterial aggregates found in tidal pools of Great Sippewissett Salt Marsh (Falmouth, Cape Cod, MA) were investigated in order to elucidate the ecological significance of cell aggregation. Purple sulfur bacteria were the dominant microorganisms in the aggregates which also contained diatoms and a high number of small rod-shaped bacteria. Urea in concentrations of ≥ 1 M caused disintegration of the aggregates while proteolytic enzymes, surfactants or chaotropic agents did not exhibit this effect. This suggests that polysaccharides in the embedding slime matrix stabilize the aggregate structure. In addition cell surface hydrophobicity is involved in aggregate formation. The concentration of dissolved oxygen decreased rapidly below the surface of aggregates while sulfide was not detected. The apparent respiration rate in the aggregates was high when the purple sulfur bacteria contained intracellular sulfur globules. In the presence of DCMU, respiration remained light-inhibited. Light inhibition disappeared in the presence of KCN. These results demonstrated that respiration in the aggregates is due mainly to purple sulfur bacteria. The concentration of bacteriochlorophyll (Bchl) a in the aggregates (0.205 mg Bchl a cm−3) was much higher than in the pool sediments but comparable to concentrations in microbial mats of adjacent sand flats. Purple aggregates may therefore originate in the microbial mats rather than in the pools themselves. Rapid sedimentation and high respiration rates of Chromatiaceae in the aggregates would prevent the inhibition of Bchl synthesis if aggregates were lifted off the sediment and up into the oxic pool water by tidal currents

    Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect

    Get PDF
    Aggregates of misfolded proteins are a hallmark of many age-related diseases. Recently, they have been linked to aging of Escherichia coli (E. coli) where protein aggregates accumulate at the old pole region of the aging bacterium. Because of the potential of E. coli as a model organism, elucidating aging and protein aggregation in this bacterium may pave the way to significant advances in our global understanding of aging. A first obstacle along this path is to decipher the mechanisms by which protein aggregates are targeted to specific intercellular locations. Here, using an integrated approach based on individual-based modeling, time-lapse fluorescence microscopy and automated image analysis, we show that the movement of aging-related protein aggregates in E. coli is purely diffusive (Brownian). Using single-particle tracking of protein aggregates in live E. coli cells, we estimated the average size and diffusion constant of the aggregates. Our results evidence that the aggregates passively diffuse within the cell, with diffusion constants that depend on their size in agreement with the Stokes-Einstein law. However, the aggregate displacements along the cell long axis are confined to a region that roughly corresponds to the nucleoid-free space in the cell pole, thus confirming the importance of increased macromolecular crowding in the nucleoids. We thus used 3d individual-based modeling to show that these three ingredients (diffusion, aggregation and diffusion hindrance in the nucleoids) are sufficient and necessary to reproduce the available experimental data on aggregate localization in the cells. Taken together, our results strongly support the hypothesis that the localization of aging-related protein aggregates in the poles of E. coli results from the coupling of passive diffusion- aggregation with spatially non-homogeneous macromolecular crowding. They further support the importance of "soft" intracellular structuring (based on macromolecular crowding) in diffusion-based protein localization in E. coli.Comment: PLoS Computational Biology (2013

    Rounding of aggregates of biological cells: Experiments and simulations

    Full text link
    The influence of surface tension and size on rounding of cell aggregates are studied using chick embryonic cells and numerical simulations based on the cellular Potts model. Our results show exponential relaxation in both cases as verified in previous studies using 2D Hydra cell aggregates. The relaxation time decreases with higher surface tension as expected from hydrodynamics laws. However, it increases faster than linearly with aggregate size. The results provide an additional support to the validity of the cellular Potts model for non-equilibrium situations and indicate that aggregate shape relaxation is not governed by the hydrodynamics of viscous liquids

    STEM CELL GROWTH AND DIFFERENTIATION IN HYDRA ATTENUATA

    Get PDF
    The differentiation of nerve cells and nematocytes from interstitial stem cells in Hydra has been investigated under conditions of changing stem cell density. Interstitial stem cells were cultured in a feeder layer system consisting of aggregates of nitrogen mustard-inactivated tissue. The aggregates were seeded with varying numbers of stem cells from 10 to 400 per aggregate; between 4 and 7 days later the rates of nerve and nematocyte differentiation were measured. Nerve differentiation was scored by labelling the stem cell population with [3H]-thymidine and counting nests of 4 proliferating nematoblasts. In both cases the numbers of differentiating cells were normalized to the size of the stem cell population. The results indicate that the rate of nematocyte differentiation increases as the concentration of stem cells increases in aggregates; under the same conditions the rate of nerve differentiation remains essentially constant. To calculate the numbers of stem cells entering each pathway per generation, a computer was programmed to simulate the growth and differentiation of interstitial stem cells. Standard curves were prepared from the simulations relating the rates of nerve and nematocyte differentiation to the fraction of stem cells committed to each pathway per generation. The rates of nerve and nematocyte commitment were then estimated from the experimentally observed rates of differentiation using the standard curves. The results indicate that nerve commitment remains constant at about 0.13 stem cells per generation over a wide range of stem cell concentration. Nematocyte commitment, by comparison, increases from 0.15 to 0.21 stem cells per generation as stem cell concentration increases in aggregates. The fact that the ratio of nerve to nematocyte commitment changes under our conditions suggests that stem cell commitment is not a stochastic process but subject to control by environmental stimuli
    • …
    corecore