17,951 research outputs found

    CO2FIX at the landscape level - an application for the Veluwe area, the Netherlands

    Get PDF
    The carbon fixation model CO2FIX was adapted to run on landscape scale, and was applied to the Veluwe area, a forested region in the Netherlands. After a simulation of 500 years, the average carbon stock per hectare in the forest products compartment is about 10 Mg C per ha, the carbon stock in the soil about 125 and the carbon stock in the biomass about 100, in total 235 Mg C per ha. The proceeding average sink for the whole of the Veluwe area (73 180 ha) amounts to 0.037 Mt C in 2020, 0.034 Mt in 2032, and 0.009 Mt C in 2482. The actual annual sink saturates much earlier, around 2050, but continues to fluctuate. The spatial variability in the results is large and is a reflection of the temporal variability occurring in a rotation. The report discusses the accuracy of CO2FIX simulations, and compares results with other studies

    Estimation of Carbon Stock Stands Using EVI and NDVI Vegetation Index in Production Forest of Lembah Seulawah Sub-District, Aceh Indonesia

    Full text link
    This study aims to determine the distribution of the vegetation indexes to estimate the carbon stocks of forest stands in the Production Forest of Lembah Seulawah sub-district. Aceh Province, Indonesia. A non-destructive method using allometric equations and landscape scale method were applied, where in carbon stocks at the points of samples are correlated with the index values of each transformation of the vegetation indexes; EVI and NDVI. Results show that EVI values of study area from 0.05 to 0.90 and NDVI values from 0.17 to 0.85. The regression analysis between EVI with carbon stock value of sample locations equation is Y = 151.7X-39.76. with the coefficient of determination (R2) is 0.83. From this calculation, the total carbon stocks in the Production Forest area of Lembah Seulawah sub-district using EVI is estimated 790.344.41 tonnes, and the average value of carbon stocks in average is 51.48 tons per hectare. Regression analysis between NDVI values at the research locations for the carbon stack measured samples is Y = 204.Xx-102.1 with coefficient of determination (R2) is 0.728. Total carbon stocks in production forest of Lembah Seulawah sub-district using NDVI is estimated 711.061.81 tones. and the average value of carbon stocks is 46.32 tons per hectare. From the above results it can be concluded that the vegetation indexes: EVI and NDVI are vegetation indexed that have a very close correlation with carbon stocks stands estimation. The correlation between EVI with carbon stock and the correlation between NDVI with carbon stock is not significantly differen

    Carbon accretion in unthinned and thinned young-growth forest stands of the Alaskan perhumid coastal temperate rainforest.

    Get PDF
    BACKGROUND: Accounting for carbon gains and losses in young-growth forests is a key part of carbon assessments. A common silvicultural practice in young forests is thinning to increase the growth rate of residual trees. However, the effect of thinning on total stand carbon stock in these stands is uncertain. In this study we used data from 284 long-term growth and yield plots to quantify the carbon stock in unthinned and thinned young growth conifer stands in the Alaskan coastal temperate rainforest. We estimated carbon stocks and carbon accretion rates for three thinning treatments (basal area removal of 47, 60, and 73 %) and a no-thin treatment across a range of productivity classes and ages. We also accounted for the carbon content in dead trees to quantify the influence of both thinning and natural mortality in unthinned stands. RESULTS: The total tree carbon stock in naturally-regenerating unthinned young-growth forests estimated as the asymptote of the accretion curve was 484 (±26) Mg C ha-1 for live and dead trees and 398 (±20) Mg C ha-1 for live trees only. The total tree carbon stock was reduced by 16, 26, and 39 % at stand age 40 y across the increasing range of basal area removal. Modeled linear carbon accretion rates of stands 40 years after treatment were not markedly different with increasing intensity of basal area removal from reference stand values of 4.45 Mg C ha-1 year-1to treatment stand values of 5.01, 4.83, and 4.68 Mg C ha-1 year-1 respectively. However, the carbon stock reduction in thinned stands compared to the stock of carbon in the unthinned plots was maintained over the entire 100 year period of observation. CONCLUSIONS: Thinning treatments in regenerating forest stands reduce forest carbon stocks, while carbon accretion rates recovered and were similar to unthinned stands. However, that the reduction of carbon stocks in thinned stands persisted for a century indicate that the unthinned treatment option is the optimal choice for short-term carbon sequestration. Other ecologically beneficial results of thinning may override the loss of carbon due to treatment. Our model estimates can be used to calculate regional carbon losses, alleviating uncertainty in calculating the carbon cost of the treatments

    Estimation of Carbon Stocks in Coffee Plantation in East Java

    Get PDF
    Global warming is closely related with the amount of carbon stored in an ecosystem. A research to determine the amount of carbon stock in the coffee farms has been conducted in Sumberbaru and Silo Sub-districts in Jember district, Kaliwining Experimental Station (ES) in Jember district, Sumberasin ES in Malang district and Andungsari ES in Bondowoso district. Carbon stock was measured using the method of Rapid Carbon Stock\u27s Assessment (RaCSA) developed by ICRAF. Measurements were made on the observation plots of 200 m2, with 3 replications. Results of measurement of carbon stock on coffee plantations showed that the increased carbon stock was proportional with the age of plants. Carbon stock in coffee plantation depends on the shade tree system. In the monoculture coffee leucaena used as shade trees, the carbon stock was lower then in multistrata system (agroforestry) used several kinds of shade trees. Carbon stock on coffee plant in the estate more than smallholder. The average of carbon stock on Robusta coffee at the age of 30 years amounted to 29.38 Mg ha-1, it is greater than the carbon deposit on Arabica coffee that is 22.02 Mg ha-1

    Carbon Stock in Different Ages and Plantation Systemof Cocoa: Allometric Approach

    Get PDF
    Indonesia has 1.5 million hectare of cocoa plantation in 2008. which hasstrategic position in carbon dioxide absorption to decrease global warming. Biomass approach method in plants carbon stock estimation specific for cocoa is still not available. The aim of this research is to determine carbon stock in 1—30 years ages of cocoa plants and to measure carbon stock in various cocoa planting systems using specific allometric formula of carbon stock estimation. Regression model on plant biomass estimation was estimated based on height, diameter, and their combination. Carbon stock estimation in different ages and plan tation system of cocoa was conducted by randomized completely block design with 3 replications. The result showed that model Y:áDâ as the best allometric formula, where Y is plant biomass, D is diameter at the breast hight, â is a constant with a value of 0.1208 and á was a constant of 1.98. Increasing of carbon stock in cocoa plantations was proportional to the ages of the plants according to the polinomial equation Y=0.0518X2+2.8976X–4.524. Agroforestry system increased carbon stock in cocoa plantation. Cocoa-Paraserianthes falcataria plantation system produce highest of carbon stock in 7 years

    The Estimation of Oil Palm Carbon Stock in Sembilang Dangku Landscape, South Sumatra

    Full text link
    Oil palm has the ability to sequester carbon dioxide stored as carbon stock. This study aimed to estimate carbon stock in some age classes, to determine the relationship between Normalized Difference Vegetation Index (NDVI) and carbon stock, and to estimate the distribution of oil palm carbon stock in Landscape Sembilang Dangku. Estimation of carbon stock were carried out at the non productive age plant phase namely <2 years, 2-3 years, and the productive plant age phase namely 4-10 years and> 10 years. The carbon stock estimation used allometric equations. Landsat 8 Operational Land Imager (OLI) /Thermal Infrared Sensor (TIRS) was analyzed to determine NDVI. Making a map of the classification of carbon stock distribution using Software QGIS Las Palmas 2.18.0. The results showed that the carbon stock in the age class <2 years was 9.50 ton C/ ha, the age class of 2-3 was 9.62 ton C/ha, the age of 4-10 was 28.23 ton C/ha and in the age class> 10 was 79.83 ton C/ha. The relation between NDVI with carbon stock had a strong correlation (r = 0.9972) with regression equation Y = 638.13x - 242.65. Carbon stock distribution was based on percentage of area as follows: <15 ton C/ha covering an area of 26.52%, 15-25 ton C/ha covering an area of 5.29%, 26-70 ton C ha covering an area of 35.41%, and > 70 ton C/ha 32.78%

    Influence of Land Use and Rainfall on Carbon Stock Dynamics for Oil Palm and Rubber

    Get PDF
    The expansion of agricultural commodities including oil palm plantations potentially causes an increase of greenhouse gas emissions by amplifying carbon dioxide (CO2) in the atmosphere. In the long term, this amplification will alter climate change. However, oil palm also has the potency to reduce greenhouse gas emissions by absorbing CO2 through photosynthesis. This study aims to determine the carbon stock that can be absorbed by oil palm and rubber plants, and to determine the relationship of rainfall with carbon stock in oil palm plants. The study used satellite image data based on Landsat and combined with rainfall data from near Perbaungan District, North Sumatra.  Three Landsat data (acquisition date: (i) 12 February 2000, (ii) 8 March 2009, and (iii) 11 August 2019) were processed to estimate carbon stock. The procedure for estimating carbon stock was as follows: determining the sample and digitizing the sampling points, converting the digital value of the numbers into the spectral spectrum, calculating the albedo values, calculating the long-wave and short-wave radiations, computing biomass, and the absorbed carbon stock. The results showed that the carbon stock in oil palm was greater than that of rubber plants as oil palm has a greater biomass. The greater the plant biomass, the bigger the carbon stock absorbed. Further, the findings revealed that rainfall in dry season has a contribution to carbon stock in oil palm and rubber. The higher the total rainfall during dry season will increase the absorbed carbon stocks.The expansion of agricultural commodities including oil palm plantations potentially causes an increase of greenhouse gas emissions by amplifying carbon dioxide (CO2) in the atmosphere. In the long term, this amplification will alter climate change. However, oil palm also has the potency to reduce greenhouse gas emissions by absorbing CO2 through photosynthesis. This study aims to determine the carbon stock that can be absorbed by oil palm and rubber plants, and to determine the relationship of rainfall with carbon stock in oil palm plants. The study used satellite image data based on Landsat and combined with rainfall data from near Perbaungan District, North Sumatra.  Three Landsat data (acquisition date: (i) 12 February 2000, (ii) 8 March 2009, and (iii) 11 August 2019) were processed to estimate carbon stock. The procedure for estimating carbon stock was as follows: determining the sample and digitizing the sampling points, converting the digital value of the numbers into the spectral spectrum, calculating the albedo values, calculating the long-wave and short-wave radiations, computing biomass, and the absorbed carbon stock. The results showed that the carbon stock in oil palm was greater than that of rubber plants as oil palm has a greater biomass. The greater the plant biomass, the bigger the carbon stock absorbed. Further, the findings revealed that rainfall in dry season has a contribution to carbon stock in oil palm and rubber. The higher the total rainfall during dry season will increase the absorbed carbon stocks

    Assessment of carbon stock in chronosequence rehabilitated tropical forest stands in Malaysia

    Get PDF
    The loss and degradation in tropical forest region are some of the current global concern. Hence, these issues elevated the role of rehabilitated forests in providing ecological products and services. The information on the carbon stock is important in relation to global carbon and biomass use, but lacking from the tropical region. This paper reports the assessment of tree and soil carbon stock in a chronosequence rehabilitated tropical forest stands in Malaysia. The study site was at the UPM-Mitsubishi Forest Rehabilitation Project, UPMKB. 20{\times}20m plot was established each and assessed in 2009 at 1-, 10- and 19-year-old sites while an adjacent ?23-year-old natural regenerating secondary forest plot was established for comparison. The overall total carbon stock was in the order of 19-year-old>?23-year-old>10-year-old>1-year-old. When forest carbon stock is low, the soil component plays an important role in the carbon storage. The forest carbon recovery is crucial to increase soil carbon stock. The variations in the carbon stock showed the different stages of the forest recovery. Species survived after 19-years of planting are potential species for carbon sequestration activities in rehabilitated forest. Human intervention in rehabilitating degraded forest areas through tree planting initiatives is crucial towards recovering the forest ecological role especially in forest carbon stock capacity

    Analysis of carbon stock density in protected and non- protected areas of Guinea Savanna in Niger State, Nigeria

    Get PDF
    Quantification of carbon stock has gained major attention in international climate change mitigation and adaptation negotiations. However, poor knowledge of the quantity of carbon stock in respective ecosystems is one major challenge in estimating carbon stock in developing countries. This study is aimed at estimating and comparing carbon stock density of protected (forest reserve) and non-protected (parkland) areas of guinea savanna in Niger state. The research methodology includes field survey inventory, biometric measurements and laboratory analysis. At each of the 45 sampling plot locations, Carbon stock was measured from six pools viz above ground tree, undergrowth, dead wood, litter, root and soil. within a quadrat sampling plot of 500 m2. Four fixed size square frames encompassing 1m2 was used for the undergrowth (shrubs and grasses) and litter. Composite soil samples (for organic carbon) and undisturbed samples (for bulk density) were taken from each of the 1m2 subplot quadrants at two depths (0-15cm and 15-30cm). Soil organic carbon concentration was estimated in the laboratory using Walkley-Black method. The findings of the study revealed that in terms of carbon stock in respective pools, in both protected and non-protected areas, soil pool was the highest, followed by tree and undergrowth; while litter, dead wood and root were the least in carbon stock. The average aggregate carbon stock density in the protected area is 118.2 Mg ha-1 which is greater than 69.3 Mg ha-1 recorded in the non- protected area. It was also observed that there is significant difference in carbon stock density between the forest reserve and parkland study sites where t (43) = 18.34, p < 0.001). The study concludes that if savannas were to be protected from fire, grazing and anthropogenic disturbances, most of them would accumulate substantial carbon and the sink would be larger; with a view to mitigating climate change effect.Keywords: Carbon stock, climate change, density, guinea savanna, mitigatio
    corecore