11,611 research outputs found

    The Effects of the Type and Timing of Dietary Folate on Memory, Learning, and Gene Expression in Mice

    Get PDF
    Folate has been known as an important vitamin for several decades. It is vital in development and epigenetics and is especially known for its involvement in the prevention of neural tube defects in newborns. Due to this ability, a synthetic form of folate, folic acid, was mandated by the government to be reinforced into cereals and grains. This study used a mouse model to determine the effects folic acid and 5-methyltetrahydrofolate have on gene expression and behavior. Since folate is known to be important for epigenetics and neuronal development, this study examined the effects of folate by applying behavioral tests to test memory and learning and a microarray analysis to test for gene expression changes. It was confirmed that folate is important for properly functioning cognition in mice. Additionally, the microarray analysis showed clear gene expression changes between the folate replete mice and the folate deficient mice. Interestingly, it was observed that the natural form of folate, 5-methyltetrahydrofolate, may confer long term benefits compared to the synthetic form, although additional research is needed to confirm this

    Toward eradication of B-vitamin deficiencies : considerations for crop biofortification

    Get PDF
    'Hidden hunger' involves insufficient intake of micronutrients and is estimated to affect over two billion people on a global scale. Malnutrition of vitamins and minerals is known to cause an alarming number of casualties, even in the developed world. Many staple crops, although serving as the main dietary component for large population groups, deliver inadequate amounts of micronutrients. Biofortification, the augmentation of natural micronutrient levels in crop products through breeding or genetic engineering, is a pivotal tool in the fight against micronutrient malnutrition (MNM). Although these approaches have shown to be successful in several species, a more extensive knowledge of plant metabolism and function of these micronutrients is required to refine and improve biofortification strategies. This review focuses on the relevant B-vitamins (B1, B6, and B9). First, the role of these vitamins in plant physiology is elaborated, as well their biosynthesis. Second, the rationale behind vitamin biofortification is illustrated in view of pathophysiology and epidemiology of the deficiency. Furthermore, advances in biofortification, via metabolic engineering or breeding, are presented. Finally, considerations on B-vitamin multi-biofortified crops are raised, comprising the possible interplay of these vitamins in planta

    Maternal nutritional status, C1 metabolism and offspring DNA methylation: a review of current evidence in human subjects.

    Get PDF
    : Evidence is growing for the long-term effects of environmental factors during early-life on later disease susceptibility. It is believed that epigenetic mechanisms (changes in gene function not mediated by DNA sequence alteration), particularly DNA methylation, play a role in these processes. This paper reviews the current state of knowledge of the involvement of C1 metabolism and methyl donors and cofactors in maternal diet-induced DNA methylation changes in utero as an epigenetic mechanism. Methyl groups for DNA methylation are mostly derived from the diet and supplied through C1 metabolism by way of choline, betaine, methionine or folate, with involvement of riboflavin and vitamins B6 and B12 as cofactors. Mouse models have shown that epigenetic features, for example DNA methylation, can be altered by periconceptional nutritional interventions such as folate supplementation, thereby changing offspring phenotype. Evidence of early nutrient-induced epigenetic change in human subjects is scant, but it is known that during pregnancy C1 metabolism has to cope with high fetal demands for folate and choline needed for neural tube closure and normal development. Retrospective studies investigating the effect of famine or season during pregnancy indicate that variation in early environmental exposure in utero leads to differences in DNA methylation of offspring. This may affect gene expression in the offspring. Further research is needed to examine the real impact of maternal nutrient availability on DNA methylation in the developing fetus

    Protective role of vitamin B6 (PLP) against DNA damage in Drosophila models of type 2 diabetes

    Get PDF
    Growing evidence shows that improper intake of vitamin B6 increases cancer risk and several studies indicate that diabetic patients have a higher risk of developing tumors. We previously demonstrated that in Drosophila the deficiency of Pyridoxal 5' phosphate (PLP), the active form of vitamin B6, causes chromosome aberrations (CABs), one of cancer prerequisites, and increases hemolymph glucose content. Starting from these data we asked if it was possible to provide a link between the aforementioned studies. Thus, we tested the effect of low PLP levels on DNA integrity in diabetic cells. To this aim we generated two Drosophila models of type 2 diabetes, the first by impairing insulin signaling and the second by rearing flies in high sugar diet. We showed that glucose treatment induced CABs in diabetic individuals but not in controls. More interestingly, PLP deficiency caused high frequencies of CABs in both diabetic models demonstrating that hyperglycemia, combined to reduced PLP level, impairs DNA integrity. PLP-depleted diabetic cells accumulated Advanced Glycation End products (AGEs) that largely contribute to CABs as α-lipoic acid, an AGE inhibitor, rescued not only AGEs but also CABs. These data, extrapolated to humans, indicate that low PLP levels, impacting on DNA integrity, may be considered one of the possible links between diabetes and cancer

    Decitabine impact on the endocytosis regulator RhoA, the folate carriers RFC1 and FOLR1, and the glucose transporter GLUT4 in human tumors.

    Get PDF
    BackgroundIn 31 solid tumor patients treated with the demethylating agent decitabine, we performed tumor biopsies before and after the first cycle of decitabine and used immunohistochemistry (IHC) to assess whether decitabine increased expression of various membrane transporters. Resistance to chemotherapy may arise due to promoter methylation/downregulation of expression of transporters required for drug uptake, and decitabine can reverse resistance in vitro. The endocytosis regulator RhoA, the folate carriers FOLR1 and RFC1, and the glucose transporter GLUT4 were assessed.ResultsPre-decitabine RhoA was higher in patients who had received their last therapy >3 months previously than in patients with more recent prior therapy (P = 0.02), and varied inversely with global DNA methylation as assessed by LINE1 methylation (r = -0.58, P = 0.006). Tumor RhoA scores increased with decitabine (P = 0.03), and RFC1 also increased in patients with pre-decitabine scores ≤150 (P = 0.004). Change in LINE1 methylation with decitabine did not correlate significantly with change in IHC scores for any transporter assessed. We also assessed methylation of the RFC1 gene (alias SLC19A1). SLC19A1 methylation correlated with tumor LINE1 methylation (r = 0.45, P = 0.02). There was a small (statistically insignificant) decrease in SLC19A1 methylation with decitabine, and there was a trend towards change in SLC19A1 methylation with decitabine correlating with change in LINE1 methylation (r = 0.47, P <0.15). While SLC19A1 methylation did not correlate with RFC1 scores, there was a trend towards an inverse correlation between change in SLC19A1 methylation and change in RFC1 expression (r = -0.45, P = 0.19).ConclusionsIn conclusion, after decitabine administration, there was increased expression of some (but not other) transporters that may play a role in chemotherapy uptake. Larger patient numbers will be needed to define the extent to which this increased expression is associated with changes in DNA methylation

    Effect Of Dietary Folate Restriction On Colon Carcinogenesis In Dna Polymerase β Haploinsufficient Mice

    Get PDF
    The data presented in this research is central to establishing the role that the base excision repair pathway (BER) plays in the development and progression of colon cancer when dietary folate is deficient. Both cellular folate restriction and BER deficiencies have been shown to result in the accumulation of endogenous damage and lesions that could eventually develop into carcinogenesis. In this study, a dietary folate deficiency (FD) resulted in a significant increase in aberrant crypt foci (ACF) formation and triggered liver tumorogenesis in wildtype (WT) animals, as did a BER deficiency in DNA polymerase Β haploinsufficient (Β-pol+/-) mice exposed to 1, 2-dimethylhydrazine (DMH), a known colon and liver carcinogen. We combined both folate restriction and a BER deficiency to determine the fate of colon tissue after exposure to DMH. Of interest, we show that this model supports a protection against colon carcinogenesis. FD attenuated onset and progression of ACF and prevented liver tumorigenesis in Β-pol haploinsufficient mice. Analysis of the data suggests that the mechanism by which this phenomenon occurs appears to be through an elevation in DNA damage that signals recruitment of PARP enzymes to the site of damage, however, with a deficiency in BER, PARP function in DNA repair is futile leading to a depletion of cellular energetic levels. This energetic stress is sensed by cell death machinery and as such apoptosis is invoked

    A Path to Implement Precision Child Health Cardiovascular Medicine.

    Get PDF
    Congenital heart defects (CHDs) affect approximately 1% of live births and are a major source of childhood morbidity and mortality even in countries with advanced healthcare systems. Along with phenotypic heterogeneity, the underlying etiology of CHDs is multifactorial, involving genetic, epigenetic, and/or environmental contributors. Clear dissection of the underlying mechanism is a powerful step to establish individualized therapies. However, the majority of CHDs are yet to be clearly diagnosed for the underlying genetic and environmental factors, and even less with effective therapies. Although the survival rate for CHDs is steadily improving, there is still a significant unmet need for refining diagnostic precision and establishing targeted therapies to optimize life quality and to minimize future complications. In particular, proper identification of disease associated genetic variants in humans has been challenging, and this greatly impedes our ability to delineate gene-environment interactions that contribute to the pathogenesis of CHDs. Implementing a systematic multileveled approach can establish a continuum from phenotypic characterization in the clinic to molecular dissection using combined next-generation sequencing platforms and validation studies in suitable models at the bench. Key elements necessary to advance the field are: first, proper delineation of the phenotypic spectrum of CHDs; second, defining the molecular genotype/phenotype by combining whole-exome sequencing and transcriptome analysis; third, integration of phenotypic, genotypic, and molecular datasets to identify molecular network contributing to CHDs; fourth, generation of relevant disease models and multileveled experimental investigations. In order to achieve all these goals, access to high-quality biological specimens from well-defined patient cohorts is a crucial step. Therefore, establishing a CHD BioCore is an essential infrastructure and a critical step on the path toward precision child health cardiovascular medicine

    Environment, epigenetics and neurodegeneration: Focus on nutrition in Alzheimer's disease

    Get PDF
    Many different environmental factors (nutrients, pollutants, chemicals, physical activity, lifestyle, physical and mental stress) can modulate epigenetic markers in the developing and adult organism. Epigenetics, in turn, can cause and is associated with several neurodegenerative and aging-dependent human diseases. Alzheimer's disease certainly represents one of the most relevant neurodegenerative disorders due to its incidence and its huge socio-economic impact. Therefore, it is easy to understand why recent literature focuses on the epigenetic modifications associated with Alzheimer's disease and other neurodegenerative disorders. One of the most intriguing and, at the same time, worrying evidence is that even "mild" environmental factors (such as behavioral or physical stress) as well as the under-threshold exposure to pollutants and chemicals, can be effective. Finally, even mild nutrients disequilibria can result in long-lasting and functional alterations of many epigenetic markers, although they don't have an immediate acute effect. Therefore, we will probably have to re-define the current risk threshold for many factors, molecules and stresses. Among the many different environmental factors affecting the epigenome, nutrition represents one of the most investigated fields; the reasons are probably that each person interacts with nutrients and that, in turn, nutrients can modulate at molecular level the epigenetic biochemical pathways. The role that nutrition can exert in modulating epigenetic modifications in Alzheimer's disease will be discussed with particular emphasis on the role of B vitamins and DNA methylation

    Evaluating predictive pharmacogenetic signatures of adverse events in colorectal cancer patients treated with fluoropyrimidines

    Get PDF
    The potential clinical utility of genetic markers associated with response to fluoropyrimidine treatment in colorectal cancer patients remains controversial despite extensive study. Our aim was to test the clinical validity of both novel and previously identified markers of adverse events in a broad clinical setting. We have conducted an observational pharmacogenetic study of early adverse events in a cohort study of 254 colorectal cancer patients treated with 5-fluorouracil or capecitabine. Sixteen variants of nine key folate (pharmacodynamic) and drug metabolising (pharmacokinetic) enzymes have been analysed as individual markers and/or signatures of markers. We found a significant association between TYMP S471L (rs11479) and early dose modifications and/or severe adverse events (adjusted OR = 2.02 [1.03; 4.00], p = 0.042, adjusted OR = 2.70 [1.23; 5.92], p = 0.01 respectively). There was also a significant association between these phenotypes and a signature of DPYD mutations (Adjusted OR = 3.96 [1.17; 13.33], p = 0.03, adjusted OR = 6.76 [1.99; 22.96], p = 0.002 respectively). We did not identify any significant associations between the individual candidate pharmacodynamic markers and toxicity. If a predictive test for early adverse events analysed the TYMP and DPYD variants as a signature, the sensitivity would be 45.5 %, with a positive predictive value of just 33.9 % and thus poor clinical validity. Most studies to date have been under-powered to consider multiple pharmacokinetic and pharmacodynamic variants simultaneously but this and similar individualised data sets could be pooled in meta-analyses to resolve uncertainties about the potential clinical utility of these markers
    corecore