128 research outputs found

    Breast cancer image classification using pattern-based Hyper Conceptual Sampling method

    Get PDF
    The increase in biomedical data has given rise to the need for developing data sampling techniques. With the emergence of big data and the rise of popularity of data science, sampling or reduction techniques have been assistive to significantly hasten the data analytics process. Intuitively, without sampling techniques, it would be difficult to efficiently extract useful patterns from a large dataset. However, by using sampling techniques, data analysis can effectively be performed on huge datasets, to produce a relatively small portion of data, which extracts the most representative objects from the original dataset. However, to reach effective conclusions and predictions, the samples should preserve the data behavior. In this paper, we propose a unique data sampling technique which exploits the notion of formal concept analysis. Machine learning experiments are performed on the resulting sample to evaluate quality, and the performance of our method is compared with another sampling technique proposed in the literature. The results demonstrate the effectiveness and competitiveness of the proposed approach in terms of sample size and quality, as determined by accuracy and the F1-measure. 2018This contribution was made possible by NPRP-07-794-1-145 grant from the Qatar National Research Fund (a member of Qatar foundation). The statements made herein are solely the responsibility of the authors.Scopu

    Chasing a Better Decision Margin for Discriminative Histopathological Breast Cancer Image Classification

    Get PDF
    When considering a large dataset of histopathologic breast images captured at various magnification levels, the process of distinguishing between benign and malignant cancer from these images can be time-intensive. The automation of histopathological breast cancer image classification holds significant promise for expediting pathology diagnoses and reducing the analysis time. Convolutional neural networks (CNNs) have recently gained traction for their ability to more accurately classify histopathological breast cancer images. CNNs excel at extracting distinctive features that emphasize semantic information. However, traditional CNNs employing the softmax loss function often struggle to achieve the necessary discriminatory power for this task. To address this challenge, a set of angular margin-based softmax loss functions have emerged, including angular softmax (A-Softmax), large margin cosine loss (CosFace), and additive angular margin (ArcFace), each sharing a common objective: maximizing inter-class variation while minimizing intra-class variation. This study delves into these three loss functions and their potential to extract distinguishing features while expanding the decision boundary between classes. Rigorous experimentation on a well-established histopathological breast cancer image dataset, BreakHis, has been conducted. As per the results, it is evident that CosFace focuses on augmenting the differences between classes, while A-Softmax and ArcFace tend to emphasize augmenting within-class variations. These observations underscore the efficacy of margin penalties on angular softmax losses in enhancing feature discrimination within the embedding space. These loss functions consistently outperform softmax-based techniques, either by widening the gaps among classes or enhancing the compactness of individual classes.This work is partially supported by the project GUI19/027 and by the grant PID2021-126701OB-I00 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”

    Chasing a Better Decision Margin for Discriminative Histopathological Breast Cancer Image Classification

    Get PDF
    When considering a large dataset of histopathologic breast images captured at various magnification levels, the process of distinguishing between benign and malignant cancer from these images can be time-intensive. The automation of histopathological breast cancer image classification holds significant promise for expediting pathology diagnoses and reducing the analysis time. Convolutional neural networks (CNNs) have recently gained traction for their ability to more accurately classify histopathological breast cancer images. CNNs excel at extracting distinctive features that emphasize semantic information. However, traditional CNNs employing the softmax loss function often struggle to achieve the necessary discriminatory power for this task. To address this challenge, a set of angular margin-based softmax loss functions have emerged, including angular softmax (A-Softmax), large margin cosine loss (CosFace), and additive angular margin (ArcFace), each sharing a common objective: maximizing inter-class variation while minimizing intra-class variation. This study delves into these three loss functions and their potential to extract distinguishing features while expanding the decision boundary between classes. Rigorous experimentation on a well-established histopathological breast cancer image dataset, BreakHis, has been conducted. As per the results, it is evident that CosFace focuses on augmenting the differences between classes, while A-Softmax and ArcFace tend to emphasize augmenting within-class variations. These observations underscore the efficacy of margin penalties on angular softmax losses in enhancing feature discrimination within the embedding space. These loss functions consistently outperform softmax-based techniques, either by widening the gaps among classes or enhancing the compactness of individual classes

    Histopathological breast cancer image classification by deep neural network techniques guided by local clustering

    Get PDF
    Breast Cancer is a serious threat and one of the largest causes of death of women throughout the world. The identifcation of cancer largely depends on digital biomedical photography analysis such as histopathological images by doctors and physicians. Analyzing histopathological images is a nontrivial task, and decisions from investigation of these kinds of images always require specialised knowledge. However, Computer Aided Diagnosis (CAD) techniques can help the doctor make more reliable decisions. The state-of-the-art Deep Neural Network (DNN) has been recently introduced for biomedical image analysis. Normally each image contains structural and statistical information. Tis paper classifies a set of biomedical breast cancer images (BreakHis dataset) using novel DNN techniques guided by structural and statistical information derived from the images. Specifically a Convolutional Neural Network (CNN), a Long-Short-Term-Memory (LSTM), and a combination of CNN and LSTM are proposed for breast cancer image classification. Softmax and Support Vector Machine (SVM) layers have been used for the decision-making stage after extracting features utilising the proposed novel DNN models. In this experiment the best Accuracy value of 91.00% is achieved on the 200x dataset, the best Precision value 96.00% is achieved on the 40x dataset, and the best F-Measure value is achieved on both the 40x and 100x datasets

    Classification of Breast Cancer Histopathological Images Using Semi-Supervised GANs

    Get PDF
    Breast cancer is diagnosed more frequently than skin cancer in women in the United States. Most breast cancer cases are diagnosed in women, while children and men are less likely to develop the disease. Various tissues in the breast grow uncontrollably, resulting in breast cancer. Different treatments analyze microscopic histopathology images for diagnosis that help accurately detect cancer cells. Deep learning is one of the evolving techniques to classify images where accuracy depends on the volume and quality of labeled images. This study used various pre-trained models to train the histopathological images and analyze these models to create a new CNN. Deep neural networks are trained in a generative adversarial fashion in a semi-supervised environment by extracting low-level features that improve classification accuracy. This paper proposes an eloquent approach to classifying histopathological images accurately using Semi-Supervised GANs with a classification accuracy greater than 93%

    A Convolutional Neural Network for the Automatic Diagnosis of Collagen VI related Muscular Dystrophies

    Full text link
    The development of machine learning systems for the diagnosis of rare diseases is challenging mainly due the lack of data to study them. Despite this challenge, this paper proposes a system for the Computer Aided Diagnosis (CAD) of low-prevalence, congenital muscular dystrophies from confocal microscopy images. The proposed CAD system relies on a Convolutional Neural Network (CNN) which performs an independent classification for non-overlapping patches tiling the input image, and generates an overall decision summarizing the individual decisions for the patches on the query image. This decision scheme points to the possibly problematic areas in the input images and provides a global quantitative evaluation of the state of the patients, which is fundamental for diagnosis and to monitor the efficiency of therapies.Comment: Submitted for review to Expert Systems With Application
    corecore