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Abstract: When considering a large dataset of histopathologic breast images captured at various
magnification levels, the process of distinguishing between benign and malignant cancer from these
images can be time-intensive. The automation of histopathological breast cancer image classification
holds significant promise for expediting pathology diagnoses and reducing the analysis time. Convo-
lutional neural networks (CNNs) have recently gained traction for their ability to more accurately
classify histopathological breast cancer images. CNNs excel at extracting distinctive features that
emphasize semantic information. However, traditional CNNs employing the softmax loss function
often struggle to achieve the necessary discriminatory power for this task. To address this challenge,
a set of angular margin-based softmax loss functions have emerged, including angular softmax
(A-Softmax), large margin cosine loss (CosFace), and additive angular margin (ArcFace), each sharing
a common objective: maximizing inter-class variation while minimizing intra-class variation. This
study delves into these three loss functions and their potential to extract distinguishing features while
expanding the decision boundary between classes. Rigorous experimentation on a well-established
histopathological breast cancer image dataset, BreakHis, has been conducted. As per the results, it is
evident that CosFace focuses on augmenting the differences between classes, while A-Softmax and
ArcFace tend to emphasize augmenting within-class variations. These observations underscore the
efficacy of margin penalties on angular softmax losses in enhancing feature discrimination within the
embedding space. These loss functions consistently outperform softmax-based techniques, either by
widening the gaps among classes or enhancing the compactness of individual classes.

Keywords: BreakHis; breast cancer image classification; discriminative deep embedding; margin
penalties on angular softmax losses; compactness and separability; deep learning

1. Introduction

Breast cancer has remained one of the most commonly diagnosed cancers in the female
population [1,2]. With the progress of digital imaging technologies, medical professionals
can now store and harness biopsy histopathology images in digital formats, revolutionizing
their role as diagnostic aids for breast cancer.

Analyzing histopathological images for breast cancer diagnosis is a demanding task,
often involving pathologists who review images at various magnification levels. This
process is not only labor-intensive but also time-consuming, as noted in previous stud-
ies [3]. Furthermore, the expertise of the pathologist can influence the diagnosis. Therefore,
computer-aided systems for histopathological image analysis are essential in breast cancer
diagnosis. However, developing such systems presents unique challenges. Histopathologi-
cal breast cancer images are known for their intricate details, high-resolution quality, and
complex tissue compositions. These images exhibit fine-grained structures and variations
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within and between classes, making classification a complex task, especially in multi-class
scenarios [4]. On the other hand, conventional machine learning-based feature extraction
methods for breast cancer histopathology images have their own limitations.

Deep learning, especially convolutional neural networks (CNNs), has the ability
to autonomously extract features and categorize histopathological breast cancer images,
thus surpassing the constraints of conventional feature extraction techniques. CNNs
offer promising prospects for the enhancement of histopathological image classification
systems in breast cancer diagnosis. This advancement promises to significantly reduce the
diagnostic time while delivering impressive outcomes more swiftly [5–10].

Despite their potential, CNNs necessitate a substantial volume of training data to
mitigate overfitting and augment their ability to generalize. On the other hand, the widely
used softmax loss function in CNNs often falls short in its capacity to effectively maximize
inter-class differences and minimize intra-class variations, especially when confronted with
restricted data resources [11]. Hence, the pursuit of improved discrimination between
diverse classes within the confines of limited data remains a prominent research area in the
field of histopathological breast cancer image analysis.

In recent times, there has been a surge in interest surrounding angular margin-based
softmax loss functions, including A-Softmax [12], CosFace/AM-Softmax [13,14], and Arc-
Face [15]. These loss functions are designed to establish a margin between distinct classes,
fostering the extraction of exceptionally distinguishing embedding features. The A-Softmax
loss function undertakes the normalization of weights using the L2 norm, which situ-
ates the normalized vector on a hypersphere. As a result, it facilitates the acquisition
of discriminative features on a hyperspherical manifold while introducing an angular
margin. Nevertheless, optimizing A-Softmax can prove challenging due to its multiplica-
tive integration of the angular margin. To address these optimization complexities, both
CosFace and ArcFace have been introduced. CosFace introduces a cosine margin to the
target logit, thereby striving to augment inter-class diversity. In contrast, ArcFace im-
poses an additive angular margin penalty on the target logit, consequently heightening
intra-class compactness.

This study delves into the evaluation of angular margin-based softmax loss functions
for their potential to boost the performance of deep learning models in the realm of binary
and multi-class classification concerning histopathological breast cancer images. Notably,
this represents a novel approach within the existing body of literature for classifying
histopathological breast cancer images. We consider three foundational loss functions
(A-Softmax (SphereFace), CosFace (AM-Softmax), and ArcFace) due to their inherent
capability to amplify between-class variability and enhance within-class cohesion. Our
exhaustive experiments, conducted on the histopathology image-based dataset of breast
cancer (BreakHis), reveal that angular margin-based softmax loss functions outperform
existing state-of-the-art methodologies. These enhancements are particularly pronounced
when compared to the conventional softmax loss function.

The structure of the remainder of this paper is as follows: Section 2 discusses previous
works, Section 3 introduces the materials and methods, Section 4 outlines the experimental
setup, Section 5 presents the results and discussion, and Section 6 concludes the paper.

2. Related Work

In recent years, deep learning-based methods have gained popularity in the domain
of histological breast cancer image classification. However, as previously highlighted,
the availability of annotated histopathological breast cancer images remains a challenge.
This limitation hinders the effective training of convolutional neural networks (CNNs) for
classification tasks. In an effort to tackle this challenge, Wang and colleagues introduced
the FE-BkCapsNet network in their research [16]. This network is specifically designed to
be trainable, even with a limited amount of training data, and is inspired by the Capsule
Network (CapsNet) architecture. The FE-BkCapsNet places particular emphasis on both
semantic and spatial information through the utilization of deep feature fusion techniques,
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which combine CNNs and CapsNet to enhance the classification performance. In high-
dimensional feature spaces, such as those created by combining various extracted features,
the issue of irrelevant and redundant features often arises. The presence of such fea-
tures can significantly increase computational complexity and potentially lead to reduced
classification accuracy due to feature redundancy.

In recent studies, the utilization of deep learning methods has garnered substantial
attention in the field of histopathological breast cancer image categorization. Nevertheless,
the scarcity of annotated histopathological images poses a notable hurdle, limiting the
performance of convolutional neural networks (CNNs) in classification assignments. To
confront this issue, Zhang and their team introduced an inventive approach that capitalizes
on existing cancer-related knowledge [17]. They introduced a CNN model designed to
focus on image-reconstructed B-channel characteristics. Given that color attributes linked
to the nucleus region in the stained images of breast cancer are primarily located in the
channel of B, they opted for reconstructed three-dimensional B-channel features over the
complete histopathology image in their approach. It is worth mentioning that their method
primarily emphasizes distinctions between different classes and does not explicitly tackle
variations within the same class. In a similar context, Zou and colleagues presented the
DsHoNet network [18] for the classification of pathological breast cancer images. For
the purpose of improving the distinctiveness of feature representation, they embraced a
dual-stream architecture that combines supplementary features. DsHoNet merged the
initial features (data) with generated features by the Ghost attention module, thereby incor-
porating complementary sets of features. Nonetheless, this dual-stream method introduced
a higher level of model complexity, raising the potential for overfitting during training. In
the quest for enhanced classification performance, Majumdar and their team introduced
an ensemble method [19], which consolidates decision scores from the different network
architectures. Their approach assigned ranks to individual classifiers using the Gamma
method to aggregate decision outputs. Nevertheless, the computational demands and
parameterization of these models may render them less practical for some applications. In
response to the challenge of a dataset with limited data (images), Toğaçar and collaborators
presented BreastNet [20], which leverages the attention mechanism. They employed the
refinement of features based on attention, incorporating two techniques, namely channel
and spatial techniques (module), to enhance the output map of the feature of residual
blocks. This improvement bolstered the performance while maintaining computational
overhead at a manageable level. BreastNet exhibited commendable performance through a
lightweight model; however, it relied on the softmax loss function, which may not fully
optimize variance among different classes and variance within the same class in embedding
feature vectors. In our investigation, we introduced a distinctive element centered on the
loss function, setting our approach apart from previous methodologies. Given its modest
computational demands and satisfactory performance relative to other CNNs, we opted
for BreastNet as the foundation of our research. Our objective is to improve the separation
between different classes and the diversity within the same class by investigating angular
margin-based softmax loss functions in deep embedding breast cancer image analysis. This
aims to address both the compactness within classes and the variation between classes.

3. Materials and Methods
3.1. Notations

To establish consistency in our mathematical notation throughout this paper, we
adopted a standardized format, which is summarized in Table 1. In this notation:

• Matrices are represented using uppercase letters, whereas vectors are indicated by
lowercase letters.

• xi corresponds to the features extracted from the i-th sample.
• The j-th column within the weight matrix W is indicated as wj ∈ Rd×C, where d

represents the sample dimension, and C denotes the total number of classes.
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• m serves as an additional angular margin, effectively employed to minimize fluctua-
tions within class boundaries.

• θyi denotes the angle formed between the weight vector wyi and the feature vector xi,
whereas θj represents the angle between the feature vector xi and the weight vector
wj, with the stipulation that j 6= yi.

• s is a scaling factor applied to all logits, effectively altering their magnitude.

Table 1. Explanation of the key symbols utilized throughout this article.

Key Symbol Definition

N Quantity of images within each batch
C Total class count

wj ∈ Rd×C The weight matrix W ∈ Rd×C, with each column corresponding to a specific class
(j-th class).

wyi The ground truth weight vector associated with class yi
xi The feature representation of the i-th sample.
θyi The angle between the feature vector xi and the corresponding weight vector wyi .

θj
The angle formed between the feature vector xi and the weight vector wj for
non-target classes (where j 6= yi).

m Cosine and angular margin penalties for CosFace and ArcFace, respectively.
s The scaling factor applied to all logit values.

3.2. BreakHis Dataset

The BreaKHis dataset stands as a challenging compilation of microscopic biopsy
images, portraying a spectrum of both benign and malignant breast tumors. This dataset,
as extensively described in previous publications [10,21,22], offers images stained with
hematoxylin and eosin (H&E). These images have a dimension of 700 × 460 pixels and
are presented in an RGB format, with each channel utilizing 8 bits. The dataset consists
of 7909 images meticulously collected from 82 referred people (patients) and covers four
magnification levels: low-magnification (40×), middle-magnification (100× and 200×), and
high-magnification (400×). It is thoughtfully organized into 2480 benign images, which are
evenly distributed across four classes: adenosis (444 images), fibroadenoma (1014 images),
phyllodes tumor (453 images), and tubular adenoma (569 images). Additionally, the dataset
encompasses 5429 malignant images, artfully organized into classes like ductal carcinoma
(3451 images), lobular carcinoma (626 images), mucinous carcinoma (792 images), and
papillary carcinoma (560 images).

3.3. Pipeline of the Proposed System

The entire pipeline of the proposed breast cancer image classification system is shown
in Figure 1. First, we used BreastNet as the CNN backbone and extracted embedded feature
vectors from the last layer along with their corresponding weights. Then, we applied l2
normalization to obtain the cosine similarity between the normalized features and weights
using the dot product definition. Next, we calculated the angle between the normalized
features and the ground truth center, which served as the target logit, and integrated the
margin penalties of various angle-dependent metric learning methods (i.e., A-Softmax
(SphereFace), AM-Softmax (CosFace), and ArcFace). The logits were then scaled using
the feature scale s. Finally, the logits were processed with the softmax function, which
contributed to the loss of cross entropy. Attempting to identify angular relationships
between classes supports deep metric learning and reduces the need for extensive training
data. This efficiency is particularly beneficial in scenarios such as breast cancer classification,
where data limitations present challenges.
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Figure 1. The complete structure of training the system (deep learning-based breast cancer clas-
sification) through the implementation of various margin penalties. (* signifies the operation
of multiplication).

3.4. Margin Penalties on Angular Softmax Losses

The standard softmax loss consists of employing both a softmax activation function
and cross-entropy loss. This softmax activation function operates at the output layer to
generate class probabilities, ensuring their summation equals one. The mathematical
expression for the cross-entropy loss is represented as:

LCE = − 1
N

N

∑
i=1

C

∑
j=1

tij log pij, (1)

where tij = [ti1, ti2, . . . , tiC] is derived from the ground-truth class yi, where it equals 1 if xi
is a member of class j. Meanwhile, pij is the class probability of the feature vector xi being
associated with class j. The computation of probability pij using the softmax function is
outlined as follows:

pij =
exp

(
wT

j xi + bj

)
∑C

j=1 exp
(

wT
j xi + bj

) , (2)

where xi ∈ Rd represents the embedding features associated with the i-th class. wj corre-
sponds to the j-th column of the W ∈ Rd×C (weight matrix), while bj ∈ RC represents the
bias term. By examining Equations (1) and (2), we can derive the softmax loss as follows:

LS = − 1
N

N

∑
i=1

log
exp

(
wT

yi
xi + byi

)
∑C

j=1 exp
(

wT
j xi + bj

) (3)
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While the softmax loss is the prevalent choice for deep feature embedding, it is worth
noting that Equation (3) illustrates its limitation. The softmax loss primarily emphasizes
maximizing the distance between classes and does not explicitly address the reduction in
within-class variance. Hence, there is significant potential for enhancing the performance
of embedded feature extraction.

To tackle this challenge, margin penalties have been introduced to the angular softmax
loss as a potential solution. Operating within the angular space, these loss functions impose
constraints aimed at increasing inter-class distances while concurrently reducing intra-class
variations. Equation (3) illustrates the transformation from the angle space to the cosine
space, accomplished by establishing the inner product between the feature vectors xi and
their associated weights wj as:

wT
j xi =

∥∥wj
∥∥‖xi‖ cos

(
θj,i
)
, (4)

where θj,i
(
0 ≤ θj,i ≤ π

)
represents the angle between wj and xi. Consequently, the softmax

loss can be reformulated as:

LSoftmax = − 1
N

N

∑
i=1

log
exp

(∥∥wyi

∥∥‖xi‖ cos
(
θyi ,n

)
+ byi

)
∑C

j=1 exp
(∥∥wj

∥∥‖xi‖ cos
(
θj,i
)
+ bj

) (5)

The A-Softmax loss, initially proposed by Liu et al. [12], incorporates certain modifi-
cations. These include nullifying the bias terms (bj = 0), normalizing the weights in the
forward propagation stage (

∣∣wj
∣∣ = 1), and introducing a margin parameter m to control the

angle. These alterations are aimed at promoting learned features with reduced intra-class
variability, as illustrated below:

LA−Softmax = − 1
N

N

∑
i=1

log
exp

(
‖xi‖ψ

(
θyi

))
exp

(
‖xi‖ψ

(
θyi

))
+ ∑C

j=1,j 6=yi
exp

(
‖xi‖ cos

(
θj
)) , (6)

where ψ
(
θyi

)
= (−1)k cos

(
mθyi

)
− 2k, θyi ∈

[
kπ
m , (k+1)π

m

]
and k ∈ [0, m− 1]. This depends

on an integer margin hyperparameter m ≥ 1, which confines it to positive integers, rather
than real numbers. This limitation results in a less flexible margin.

CosFace loss, also known as AM-Softmax [13,14], took a different approach by nor-
malizing ‖xi‖ = 1. They substituted ψ

(
θyi

)
with

(
cos θyi −m

)
to introduce the additive

margin softmax loss, defined as:

LCosFace = − 1
N

N

∑
i=1

log
exp

(
s ·
(
cos θyi −m

))
exp

(
s ·
(
cos θyi −m

))
+ ∑C

j=1,j 6=yi
exp

(
s · cos θj)

) , (7)

where m is a cosine margin and s is a scaling factor for preventing excessively small
gradients during the training.

To maintain the angular space and improve angular discrimination, ArcFace [15]
implemented a modification by replacing the cosine space with an angular space. This
resulted in the introduction of the additive angular margin softmax loss, which is defined
as follows:

LArcFace = − 1
N

N

∑
i=1

log
exp

(
s ·
(
cos(θyi + m)

))
exp

(
s ·
(
cos(θyi + m)

))
+ ∑C

j=1,j 6=yi
exp

(
s · cos θj)

) (8)

In Figure 2, we present a comparison of the decision boundaries resulting from various
loss functions in a binary classification scenario. The decision boundary produced by the
softmax loss is influenced by both the magnitude of weight vectors and the cosine angles,
resulting in overlapping decision regions within the cosine space. A-Softmax improves
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upon the softmax loss by introducing an additional margin. However, it is important to
note that the margin in A-Softmax varies with different θ values; it decreases as θ decreases
and becomes nonexistent at θ = 0. This implies that the margin is smaller for classes that
are visually similar. In contrast, CosFace introduces a nonlinear angular margin, which
may not provide adequate support for achieving intra-class compactness.

Figure 2. Visualizing decision boundaries: This figure presents a graphical representation of decision
boundaries for diverse loss functions in a binary classification context. The figure comprises four
subplots, each corresponding to a distinct loss function: (a) Softmax; (b) A-Softmax; (c) CosFace; and
(d) ArcFace. The decision boundary is symbolized by a dashed line, while the white regions signify
the decision margin.

ArcFace adopts a distinctive approach, differentiating itself from A-Softmax and
CosFace, by directly manipulating and optimizing the angular space. This uniqueness
stems from the precise relationship between the angle space and arc within the hypersphere.
A-Softmax (SphereFace) and CosFace utilize nonlinear margins, whereas ArcFace maintains
a linear and constant margin throughout the entire process. This feature inherently enhances
the compactness of the intra-class during the process of training. On the contrary, CosFace
(AM-Softmax) introduces the margin in the cosine space, primarily impacting between-
class distances and consequently ensuring discrimination between classes while achieving
compactness within distinct classes. In a different effort but with the same target, ArcFace
places greater emphasis on enhancing the compactness of intra-class.

3.5. Convolutional Neural Networks

We opted for the BreastNet architecture as the foundational framework for our ap-
proach [20]. BreastNet is characterized by its lightweight design, boasting around 600,000
parameters, and it harnesses the convolutional block attention module (CBAM) [23,24].
CBAM plays a pivotal role in enhancing the model’s ability to identify critical local regions,
thereby extracting more discriminative features and elevating its representation capacity.
BreastNet incorporates several key components, including the CBAM layer, convolutional
layer, dense layer, residual layer, and hypercolumn technique. The CBAM layer is a stand-
out feature, housing both channel and spatial attention modules. This dynamic combination
allows the model to pinpoint significant areas within histopathological images, ensuring
focused attention where needed. Importantly, CBAM achieves these improvements with
minimal overhead, bolstering model performance without introducing a significant in-
crease in weights and computational time. The residual layer is employed to enhance
gradient smoothness, alleviate issues of overfitting and underfitting, and foster improved
generalization. Additionally, the hypercolumn technique is instrumental in analyzing
BreakHis images at various scales. It aids in comprehending diseases, stabilizing classifi-
cation outcomes, and overall enhancing the model’s classification performance. Figure 3
illustrates the holistic architecture of BreastNet. The model’s structure is divided into mul-
tiple stages for feature extraction. In the first stage, global features are extracted from the
input data. Following this, the two subsequent stages, namely stages two and three, further
refine the representation by extracting additional local and global features. To augment the
capacity of embedding features in these stages, we introduced the CBAM layer within the
convolutional blocks. These CBAM blocks play a crucial role in identifying vital regions
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within histopathological images that require the model’s focused attention. This process is
facilitated by the channel and spatial attention techniques embedded within the CBAM.
Inside the architecture, the model incorporates a dense, global average pooling layer, and
dropout layers to function as a classification phase. For the output activation function, we
adopt the usual softmax and angular softmax losses (i.e., A-Softmax (SphereFace), CosFace
(AM-Softmax), and ArcFace), which are utilized to calculate class probabilities for the
cross-entropy loss.

Figure 3. The BreastNet architecture serves as the foundation of our experimental approach. Breast-
Net employs a combination of convolutional and residual blocks for feature extraction. To enhance
its performance, CBAM module blocks are incorporated to enable the model to emphasize crucial
regions in histopathological images. Additionally, the hypercolumn technique is employed to analyze
BreakHis images at various scales, aiding in the comprehension of the disease.

4. Experimental Setup

We carried out our experiments through Python 3.6 and utilized Tensorflow-gpu (ver-
sion 1.15.0). The training process was conducted on an Nvidia GeForce 2080Ti GPU (RTX
model) with 11 GB of memory. To ensure robustness, we adopted a k-fold cross-validation
(k = 5) approach. Our reported results are displayed as the mean of five outcomes, along
with their corresponding standard deviations. We resized the input images to dimensions
of 224 × 224 pixels. The training of the convolutional neural networks (CNNs) involved
setting the number of training epochs to 100, with the early stopping activated after 100
epochs. We employed a mini-batch size of 16 and harnessed the ADAM optimization
method. Furthermore, to accelerate the training process, we employed stochastic gradient
descent with a warm restart (SGDR) [25]. SGDR employs a cosine annealing strategy
to regulate learning rates with cyclic restarts. This periodic increase in the learning rate
encourages the model to explore more stable local minima during training. We configured
the minimum learning rate to 1× 10−6 and the maximum learning rate to 1× 10−3, respec-
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tively. To further enhance the robustness of our model, we implemented data augmentation
techniques using the albumentations library [26]. Specifically, we applied augmentation
techniques such as flipping, shifting, adjusting brightness, and rotation, each with cor-
responding hyperparameters set to 0.5, 0.2, 0.3, and 20, respectively. It is important to
note that data augmentation was conducted on a one-to-one basis without any duplica-
tion. In terms of loss functions, we considered a range of options, including softmax,
A-Softmax, CosFace, and ArcFace. To fine-tune these methods, we established specific
hyperparameters: A-Softmax’s multiplicative angular margin was set to 1.35, CosFace’s
additive cosine margin to 0.35, and ArcFace’s additive angular margin to 0.50. Additionally,
we set the scaling factor s to 64 and maintained a fixed weight decay of 5× 10−4, aligning
with the configuration described in [15]. To assess the performance of our system, we
relied on standard statistical metrics, including precision (Pr), recall (Re), F1-score, and
overall classification accuracy (Acc), all of which were derived from confusion matrices
(Equations (9)–(12)). This comprehensive evaluation was conducted using the test dataset.

Pr =
(TP)

(TP + FP)
(9)

Re =
(TP)

(TP + FN)
(10)

F1-Score =
(2× TP)

(2× TP + FP + FN)
(11)

Acc =
(TP + TN)

(TP + FN) + (FP + TN)
(12)

where TP corresponds to true positives, TN signifies true negatives, FP stands for false
positives, and FN represents false negatives.

5. Results and Discussion
5.1. Experiments with Different Losses

We carried out the performance evaluation of different loss functions, namely softmax,
A-Softmax (SphereFace), CosFace (AM-Softmax), and ArcFace, using the BreastNet feature
learning across various data groups of the dataset (i.e., low-magnification (40×), middle-
magnification (100× and 200×), and high-magnification (400×)). The results, presented in
Table 2, offer intriguing insights. A-Softmax demonstrates enhanced discriminative feature
embedding and improved performance compared to softmax in middle resolutions (i.e.,
100× and 200×). However, it exhibits unstable training and leads to decreased system
performance in the low-resolution group (40×) and high-resolution group (400×). The
integer angular margin employed by angular softmax results in a steep target logit curve,
which can impede convergence. In scenarios where discriminating inter-class distances is
vital, such as the 40× and 400× groups, A-Softmax’s emphasis on compacting intra-class
variance becomes less effective in increasing inter-class diversity. On the contrary, CosFace
and ArcFace demonstrate their effectiveness in enhancing training stability and elevating
the discriminative capabilities of the model. Both of these loss functions lead to a notable
improvement in all metrics across all data, as compared to softmax. An interesting obser-
vation is that CosFace surpasses ArcFace in terms of inter-class discrimination. CosFace
directly incorporates the cosine margin into the target logit, placing a strong emphasis
on expanding inter-class distances. This leads to superior performance, particularly in
the low-resolution group (40×) and high-resolution group (400×), where between-class
distance plays a crucial role. In contrast, ArcFace adopts an alternative strategy, optimizing
the geodesic space through a uniform margin, resulting in enhanced performance in middle
resolutions (i.e., 100× and 200×). In summary, CosFace (AM-Softmax) prioritizes increas-
ing between-class distances, while ArcFace concentrates on boosting the compactness of
the intra-class through target class logit penalization. Consequently, ArcFace stands out
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in achieving the exceptional compactness of the intra-class for the middle resolution data
(i.e., 100× and 200×), while CosFace excels in enhancing the diversity of the inter-class,
particularly in the case of the low-resolution group (40×) and high-resolution groups
(400×), as a courtesy of its cosine margin approach. Figure 4 illustrates the training and
validation losses for angular margin-based softmax losses and softmax when employed
with the BreastNet network. These findings emphasize the superior training performance
of softmax losses based on an angular margin, which consistently results in lower training
losses compared to the softmax loss during the training phase for classifying breast cancer
histopathological images using the BreakHis dataset. As detailed in Table 3, these improve-
ments come without significant changes in parameters or computation time, making these
kinds of losses an efficient choice with minimal extra training overhead.

Table 2. Comparison results of various angular margin-based softmax losses for various data groups
(i.e., 40×, 100×, 200×, and 400×). The best outcomes are highlighted in bold.

Employed
BreakHis
Data

Method Pr (%) Re (%) F1-Score (%) Acc (%)

40×

Softmax 96.56 ± 3.85 95.30 ± 3.94 95.88 ± 3.88 96.49 ± 3.31

A-Softmax 97.05 ± 1.24 94.59 ± 3.68 95.58 ± 2.86 96.34 ± 2.22

CosFace 97.47 ± 0.50 96.59 ± 0.97 97.01 ± 0.73 97.44 ± 0.62

ArcFace 97.54 ± 1.22 96.31 ± 1.25 96.88 ± 1.22 97.34 ± 1.03

100×

Softmax 94.75 ± 5.08 94.98 ± 3.70 94.77 ± 4.54 95.35 ± 4.18

A-Softmax 95.87 ± 1.95 95.61 ± 1.88 95.74 ± 1.90 96.31 ± 1.65

CosFace 96.72 ± 1.68 95.73 ± 2.54 96.18 ± 2.17 96.73 ± 1.81

ArcFace 97.52 ± 0.54 96.42 ± 0.92 96.93 ± 0.59 97.36 ± 0.50

200×

Softmax 96.37 ± 1.43 96.92 ± 1.24 96.62 ± 1.27 97.07 ± 1.10

A-Softmax 97.32 ± 1.34 96.04 ± 3.54 96.54 ± 2.67 97.12 ± 2.21

CosFace 97.01 ± 1.35 97.08 ± 2.04 96.99 ± 1.58 97.42 ± 1.32

ArcFace 98.13 ± 1.20 97.26 ± 2.16 97.65 ± 1.69 98.01 ± 1.42

400×

Softmax 93.82 ± 3.59 94.88 ± 3.16 94.30 ± 3.41 94.94 ± 3.05

A-Softmax 94.03 ± 4.18 93.12 ± 6.54 93.39 ± 5.70 94.45 ± 4.52

CosFace 95.64 ± 1.47 96.16 ± 0.89 95.88 ± 1.20 96.37 ± 1.09

ArcFace 94.47 ± 1.37 94.50 ± 2.02 94.45 ± 1.65 95.16 ± 1.40

Figure 4. Cont.
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Figure 4. Training and validation losses comparison among softmax and different softmax losses
based on an angular margin with BreastNet feature learning in a binary classification context. Sub-
plot (a) illustrates the training and validation losses associated with Softmax, while subplots (b–d)
showcase the training and validation losses for the angular margin-based softmax losses, namely
A-Softmax, CosFace, and ArcFace, respectively. The results highlight the efficacy of softmax losses
based on an angular margin in achieving lower training losses compared to the softmax loss during
the training of breast cancer histopathological image classification on the BreakHis dataset.

Table 3. Comparative analysis of various methods with regard to the number of parameters and
computational time in the five-fold strategy.

Method Number of
Parameters

Training Time
(s/epoch)

Classification Time
(ms/image)

Softmax 605,566 57.3 ± 2.64 13.3 ± 1.24

A-Softmax 605,582 58.8 ± 1.69 14.7 ± 1.44

CosFace 605,580 57.5 ± 1.76 15.7 ± 1.68

ArcFace 605,582 58.3 ± 2.32 15.1 ± 1.95

In addition to the primary binary classification task of distinguishing between benign
and malignant classes, we also engaged in sub-class classification using the approach
detailed in [20]. The benign category encompasses four sub-classes: (1) adenosis; (2)
fibroadenoma; (3) phyllodes tumor; and (4) tubular adenoma, while the malignant category
comprises four sub-classes: (1) ductal carcinoma; (2) lobular carcinoma; (3) mucinous
carcinoma; and (4) papillary carcinoma. The outcomes of sub-class classification for both
the benign and malignant categories are displayed in Table 4. Remarkably, the BreastNet
model, trained using softmax losses based on an angular margin, consistently surpasses
the performance of the softmax loss across sub-classes within both benign and malignant
categories. This outcome underscores the prowess of softmax losses based on an angular
margin in achieving highly discriminative feature embeddings for multi-class classification
tasks. To delve deeper into the advantages of softmax losses based on an angular margin,
we conducted a comparison of the two-dimensional embeddings produced by these loss
functions across the entire BreakHis dataset. This visualization, showcased in Figure 5, was
created by applying the t-distributed stochastic neighbor embedding (t-SNE) algorithm to
reduce a 256-dimensional embedding to a 2-dimensional embedding. Notably, there is a
distinct difference in the boundary between the two classes: benign and malignant as we
transition from softmax loss to CosFace loss. This shift indicates an enhanced separation
between these classes. However, CosFace, which primarily emphasizes inter-class diversity,
faces challenges in effectively reducing intra-class variations. On the other hand, ArcFace
excels in promoting the compactness of the intra-class but does not prioritize the diversity
of the inter-class to the same degree. It aims to strike a balance by simultaneously enhancing
the intra-class compactness and the inter-class diversity to some extent. We also conducted
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a comparison of t-SNE feature embeddings among different loss functions in sub-class
classification scenarios within both the benign and malignant classes. Figure 6 showcases
t-SNE feature embeddings resulting from various loss functions for four benign classes,
including adenosis, fibroadenoma, phyllodes tumor, and tubular adenoma. Furthermore,
Figure 7 presents the t-SNE feature embeddings derived from the various loss functions for
four malignant classes, namely ductal carcinoma, lobular carcinoma, mucinous carcinoma,
and papillary carcinoma. As evident in both figures, the utilization of angular margin-
based softmax losses enhances both intra-class compactness and inter-class diversity when
compared to the softmax function. From our earlier discussion in Section 3.2. It is important
to highlight that the larger quantity of malignant images (5429 images) in comparison to
benign images (2480 images) plays a significant role in the enhanced performance of
BreastNet+angular margin-based softmax losses for discriminative feature learning in the
malignant class, as it provides more robust training opportunities.

Figure 5. Analyzing t-SNE embeddings: This figure showcases a comparative view of t-SNE embed-
dings obtained from different loss functions in a binary classification scenario. Subplot (a) displays
the t-SNE embedding derived from Softmax, while subplots (b–d) represent the embeddings result-
ing from the angular margin-based softmax losses, specifically A-Softmax, CosFace, and ArcFace,
respectively. These embeddings are based on the complete BreakHis dataset. The blue line indicates
the collision boundary between classes.

Figure 6. Cont.
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Figure 6. Comparative t-SNE embeddings: This figure provides a comparative analysis of t-SNE
embeddings obtained from various loss functions in a sub-class classification scenario within the
benign class, consisting of four classes: (1) adenosis; (2) fibroadenoma; (3) phyllodes tumor; and (4)
tubular adenoma. Subplot (a) illustrates the t-SNE embedding generated by Softmax, while subplots
(b–d) depict the embeddings resulting from angular margin-based softmax losses, namely A-Softmax,
CosFace, and ArcFace, respectively. These embeddings are derived from the benign data subset of
the BreakHis dataset.

Table 4. Assessing diverse softmax losses based on an angular margin for subclass classification
involving both benign and malignant data, considering four distinct classes. The superior outcomes
are highlighted in bold.

Method Employed
BreakHis Data Pr (%) Re (%) F1-Score (%) Acc (%)

Benign subset

Softmax All magnifica-
tions 92.82 ± 1.18 91.02 ± 0.86 91.70 ± 0.75 92.46 ± 0.61

A-Softmax All magnifica-
tions 92.78 ± 1.87 92.26 ± 1.83 92.44 ± 1.85 92.90 ± 1.68

CosFace All magnifica-
tions 93.01 ± 1.56 92.99 ± 0.72 92.93 ± 1.11 93.55 ± 1.02

ArcFace All magnifica-
tions 93.36 ± 1.19 92.93 ± 1.82 93.09 ± 1.49 93.55 ± 1.33

Malignant subset

Softmax All magnifica-
tions 86.93 ± 1.74 86.09 ± 3.08 86.39 ± 2.28 90.04 ± 1.51

A-Softmax All magnifica-
tions 87.83 ± 2.68 84.41 ± 5.92 85.89 ± 4.53 90.06 ± 2.76

CosFace All magnifica-
tions 89.41 ± 2.82 86.72 ± 6.30 87.73 ± 4.72 91.29 ± 3.05

ArcFace All magnifica-
tions 89.96 ± 2.39 86.28 ± 4.36 87.86 ± 3.60 91.42 ± 2.37

Figure 7. Cont.
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Figure 7. Comparative t-SNE embeddings: This figure provides a comparative analysis of t-SNE
embeddings obtained from various loss functions in a sub-class classification scenario within the
malignant class, consisting of four classes: (1) ductal carcinoma; (2) lobular carcinoma; (3) mucinous
carcinoma; and (4) papillary carcinoma. Subplot (a) illustrates the t-SNE embedding generated by
Softmax, while subplots (b–d) depict the embeddings resulting from angular margin-based softmax
losses, namely A-Softmax, CosFace, and ArcFace, respectively. These embeddings are derived from
the malignant data subset of the BreakHis dataset.

5.2. Comparison with State-of-the-Art Methods

To showcase the prowess of softmax losses based on an angular margin in expediting
the convergence of the model and elevating classification performance, we performed a
comparative analysis. Specifically, we evaluated the performance of BreastNet combined
with CosFace loss and BreastNet combined with ArcFace loss with the latest methodologies
based on deep learning that achieved benchmark accuracies for binary breast tumor classifi-
cation using the BreakHis dataset. The outcomes and methodologies of these cutting-edge
approaches are succinctly outlined in Table 5. Looking at the data presented in Table 5, it is
apparent that earlier approaches attempted to enhance feature representation through the
utilization of substantial deep learning architectures like the VGG16 model, Xception model,
and Inception-ResNet-v2 model. Zhu et al. [27] introduced an innovative approach involving
the fusion of multiple CNNs. Their method included global and local branches, creating
a hybrid deep learning architecture aimed at enhancing feature representation. To further
enhance performance, they integrated the squeeze-excitation-pruning (SEP) block into the
deep learning model, effectively identifying crucial channels. This approach yielded an aver-
age accuracy of 83.78%. Building on this foundation, Li et al. [28] proposed the Interleaved
DenseNet (IDSNet) method, harnessing the DenseNet block and the channel attention module
SENet (Squeeze-and-Excitation). IDSNet surpassed Zhu et al.’s [27] approach, achieving a
superior average accuracy of 86.40%. In another endeavor, Budak et al. [29] developed a
model that achieved an impressive average classification rate of 92.47%. This model utilized
a convolutional network in conjunction with a bidirectional long short-term memory (Bi-
LSTM) architecture. Additionally, researchers in [30,31] pursued improvements in feature
representation by employing a large-scale deep learning model (i.e., VGG16) and achieved
an average accuracy of 95.30% and 94.73%, respectively. Sharma et al. [32] and Abbasniya
et al. [33] demonstrated remarkable results with average classification rates of 95.59% and
96.45%, respectively. Nevertheless, it is important to note that these methods relied on transfer
learning with ImageNet weights, which might not be the most suitable approach for breast
cancer image classification. Additionally, their reported results did not account for the average
of 5-fold cross-validation outcomes, potentially introducing variability due to different data
splits. To combat the challenge posed by limited data, Chattopadhyay et al. [34] introduced the
MTRRE-Net74 deep learning model, incorporating a two-fold residual recurrent operation and
a multi-scaling operation to emphasize spatial information. While their approach achieved
the best accuracy for the 400× data by focusing on local and spatial information, it exhibited
comparatively lower classification rates for other data. In contrast, BreastNet+CosFace and
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BreastNet+ArcFace outperform these methods on the BreakHis dataset, despite being trained
from scratch. CosFace achieves the highest accuracy for the 40× data, boasting an impressive
average classification accuracy of 96.99%, while ArcFace attains the highest accuracies for the
100× and 200× data, maintaining an average classification rate of 96.97%. Our feature repre-
sentation leverages the BreastNet architecture with 600 K parameters, effectively extracting
both spatial and channel information. The inclusion of CosFace and ArcFace loss functions
is a crucial factor in improving the convergence of the deep learning model and boosting
classification results.

Table 5. Comparison between the CosFace and ArcFace methods and state-of-the-art deep learning-
based approaches on the BreakHis dataset. The superior results are highlighted in bold.

Method
Acc (%)

Average
40× 100× 200× 400×

Hybrid CNN improved by SEP block [27] 85.60 83.90 84.40 81.20 83.78

DenseNet improved by SENet module [28] 89.10 85.00 87.00 84.50 86.40

FCN combined with BiLSTM network [29] 95.69 93.60 96.30 94.29 92.47

VGG16 feature extractor with SVM and RF classification [30] 94.11 95.10 97.00 94.96 95.30

Data augmentation by DCGAN for VGG16 training [31] 96.40 94.00 95.50 93.00 94.73

Xception feature extractor with SVM classification [32] 96.25 96.25 95.74 94.11 95.59

Inception-ResNet-v2 combined with CatBoost, XGBoost, and LightGBM [33] 96.82 95.84 97.01 96.15 96.45

Multi-scale dual residual recurrent network [34] 97.12 95.20 96.80 97.81 96.73

BreastNet architecture supervised by CosFace 97.44 96.73 97.42 96.37 96.99

BreastNet architecture supervised by ArcFace 97.34 97.36 98.01 95.16 96.97

5.3. Discussion

A loss function’s primary task in deep supervised learning is to close the gap between
expected and actual results, hence driving the learning process. This study looks into
angular margin-based softmax losses, specifically A-Softmax (SphereFace), CosFace (AM-
Softmax), and ArcFace, and their relevance in breast cancer analysis using histopathology
images. These loss functions, which have historically been connected with facial recognition
tasks, are being studied to determine their potential efficacy in the context of image-based
breast cancer classification, especially when dealing with a challenging dataset. The focus
of our investigation is the BreaKHis dataset, which presents unique problems for training
convolutional neural networks (CNNs) due to its limited size. The scarcity of sufficient
training data worsens the issue of overfitting in CNNs, leading to the model’s learned
distribution deviating from the actual distribution. In our pursuit of effectively training
deep learning models for breast cancer image analysis, even when data are scarce, we lay
a strong emphasis on three critical components that, when combined, offer considerable
improvements: (1) Leveraging the lightweight architecture of BreastNet safeguards against
overfitting, endowing the model with robust generalization capabilities—especially when
dealing with limited data. (2) The incorporation of an attention mechanism steers the
abilities of the nimble network towards pertinent features, streamlining the utilization of
available data. (3) Softmax losses based on an angular margin are critical in amplifying
the model’s discriminatory prowess, thereby improving its overall performance within
the limitations of a small dataset. The utilization of these discriminative loss functions has
showcased exceptional performance, encompassing heightened accuracy, F1-score, preci-
sion, and recall, across binary and multi-classification tasks for pathological breast cancer
images when juxtaposed with alternative models. Additionally, our investigation into loss
convergence during the training phase has unveiled that angular margin-based softmax
losses foster more efficient convergence in contrast to the conventional softmax loss.
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While these loss functions have displayed encouraging outcomes, their performance is
contingent on the selection of suitable margin values. Inaccurate margin choices can result
in amplified intra-class variability and classification errors. Additionally, the BreakHis
dataset employed in the development of the deep learning model exhibits an imbalance,
comprising malignant images (5429) and benign images (2480). This dataset’s class im-
balance can impact the model’s tumor classification performance, as it tends to favor the
larger class. In the course of model training, angular margin-based losses employ con-
sistent margins for both classes (benign and malignant), irrespective of the class sizes.
Therefore, a prospective avenue for future research could involve dynamically adjusting
inter-class and intra-class margins based on the class sample sizes to mitigate bias towards
the majority class.

6. Conclusions

This study explored the role of softmax losses based on an angular margin in enhancing
the convergence of deep convolutional neural networks (CNNs) for histopathological
image classification using the BreakHis dataset. Leveraging BreastNet, a lightweight
deep learning architecture, as our backbone, we used A-Softmax, CosFace, and ArcFace
as discriminative loss functions, offering a new approach to achieving high accuracy in
breast cancer diagnosis based on whole-slide image analysis without the need for nuclei
segmentation. Our experimental results consistently demonstrated that the BreastNet
model, guided by angular margin-based softmax losses, consistently outperformed the
softmax loss across all magnification factors. Notably, CosFace and ArcFace played pivotal
roles in stabilizing and enhancing the discriminative power of our deep learning model.
CosFace excelled in prioritizing the inter-class distance expansion, achieving the highest
inter-class diversity for the 40× and 400× data with classification accuracies of 97.44%
and 96.37%, respectively. ArcFace, on the other hand, directly penalized the target logit,
resulting in the best intra-class compactness for the middle-resolution data (i.e., 100×
and 200×), with classification accuracies of 97.36% and 98.01%, respectively. CosFace’s
nonlinear angular margin influenced inter-class distances, while ArcFace’s constant linear
angular margin improved the compactness of the intra-class during the discriminative
deep-embedded learning. Both nonlinear and linear angular margins proved effective
in establishing a resilient decision boundary that strikes a balance between intra-class
and inter-class distances. This finding suggests potential directions for future research in
this field.
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