4,427 research outputs found

    Precision CW laser automatic tracking system investigated

    Get PDF
    Precision laser tracker capable of tracking a low acceleration target to an accuracy of about 20 microradians rms is being constructed and tested. This laser tracking has the advantage of discriminating against other optical sources and the capability of simultaneously measuring range

    Operation of LANDSAT automatic tracking system

    Get PDF
    There are no author-identified significant results in this report

    Cellular tracking in time-lapse phase contrast images

    Get PDF
    The quantitative analysis of live cells is a key issue in evaluating biological processes. The current clinical practice involves the application of a tedious and time consuming manual tracking procedure on large amount of data. As a result, automatic tracking systems are currently developed and evaluated. However, problems caused by cellular division, agglomeration, Brownian motion and topology changes are difficult issues that have to be accommodated by automatic tracking techniques. In this paper, we detail the development of a fully automated multi-target tracking system that is able to deal with Brownian motion and cellular division. During the tracking process our approach includes the neighbourhood relationship and motion history to enforce the cellular tracking continuity in the spatial and temporal domain. The experimental results reported in this paper indicate that our method is able to accurately track cellular structures in time-lapse data

    Laparoscopic image analysis for automatic tracking of surgical tools

    Get PDF
    Laparoscopy is a surgical technique nowadays embedded in the clinical routine. Recent researches have been focused on analysing video information captured by the endoscope for extracting cues useful for surgeons, such as depth information. In particular, the 3D pose estimation of the surgical tools presents three important added values: (1) to extract objective parameters for the surgical training stage, (2) to develop an image-guided surgery based on the knowledge of the surgery tools localization, (3) to design new roboticsystems for an automatic laparoscope positioning, according to the visual feedback. Tool’s shape and orientation in the image is the key to get its 3D position. This work presents an image analysis for automatic laparoscopic tool’s detection along the recorded video without extra tool markers, using an edges detection strategy. Also, this analysis includes a previous stage of barrel distortion correction for videoendoscopic image

    Validation of the automatic tracking for facial landmarks in 3D motion captured images

    Get PDF
    Aim: The aim of this study was to validate the automatic tracking of facial landmarks in 3D image sequences captured using the Di4D system (Dimensional Imaging Ltd., Glasgow, UK). MATERIALS AND METHODS: 32 subjects (16 males; 16 females) range 18-35 years were recruited. 23 facial landmarks were marked on the face of each subject with a 0.5 mm non-permanent ink. The subjects were asked to perform three facial animations from the rest position (maximal smile, lip purse and cheek puff). Each animation was captured by a 3D stereophotogrammetry video system (Di4D). A single operator digitized landmarks on captured 3D models and the manual digitised landmarks were compared with the automatic tracked landmarks. To investigate the accuracy of manual digitisation, the same operator re-digitized 2 subjects (1 male and 1 female). RESULTS & CONCLUSION: The discrepancies in x, y and z coordinates between the manual digitised landmarks and the automatic tracked facial landmarks were within 0.5 mm and the mean distance between the manual digitisation and the automatic tracking of corresponding landmarks using tracking software was within 0.7 mm which reflects the accuracy of the method( p value was very small). The majority of these distances were within 1 mm. The correlation coefficient between the manual and the automatic tracking of facial landmarks was 0.999 in all x, y, and z coordinates. In conclusion, Automatic tracking of facial landmarks with satisfactory accuracy, would facilitate the analysis of the dynamic motion during facial animations

    Effectiveness of an automatic tracking software in underwater motion analysis

    Get PDF
    Tracking of markers placed on anatomical landmarks is a common practice in sports science to perform the kinematic analysis that interests both athletes and coaches. Although different software programs have been developed to automatically track markers and/or features, none of them was specifically designed to analyze underwater motion. Hence, this study aimed to evaluate the effectiveness of a software developed for automatic tracking of underwater movements (DVP), based on the Kanade-Lucas-Tomasi feature tracker. Twenty-one video recordings of different aquatic exercises (n = 2940 markers' positions) were manually tracked to determine the markers' center coordinates. Then, the videos were automatically tracked using DVP and a commercially available software (COM). Since tracking techniques may produce false targets, an operator was instructed to stop the automatic procedure and to correct the position of the cursor when the distance between the calculated marker's coordinate and the reference one was higher than 4 pixels. The proportion of manual interventions required by the software was used as a measure of the degree of automation. Overall, manual interventions were 10.4% lower for DVP (7.4%) than for COM (17.8%). Moreover, when examining the different exercise modes separately, the percentage of manual interventions was 5.6% to 29.3% lower for DVP than for COM. Similar results were observed when analyzing the type of marker rather than the type of exercise, with 9.9% less manual interventions for DVP than for COM. In conclusion, based on these results, the developed automatic tracking software presented can be used as a valid and useful tool for underwater motion analysis. Key PointsThe availability of effective software for automatic tracking would represent a significant advance for the practical use of kinematic analysis in swimming and other aquatic sports.An important feature of automatic tracking software is to require limited human interventions and supervision, thus allowing short processing time.When tracking underwater movements, the degree of automation of the tracking procedure is influenced by the capability of the algorithm to overcome difficulties linked to the small target size, the low image quality and the presence of background clutters.The newly developed feature-tracking algorithm has shown a good automatic tracking effectiveness in underwater motion analysis with significantly smaller percentage of required manual interventions when compared to a commercial software
    corecore