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Abstract 
 
The quantitative analysis of live cells is a key issue in 
evaluating biological processes. The current clinical 
practice involves the application of a tedious and time 
consuming manual tracking procedure on large amount of 
data. As a result, automatic tracking systems are currently 
developed and evaluated. However, problems caused by 
cellular division, agglomeration, Brownian motion and 
topology changes are difficult issues that have to be 
accommodated by automatic tracking techniques. In this 
paper, we detail the development of a fully automated multi-
target tracking system that is able to deal with Brownian 
motion and cellular division. During the tracking process 
our approach includes the neighbourhood relationship and 
motion history to enforce the cellular tracking continuity in 
the spatial and temporal domain. The experimental results 
reported in this paper indicate that our method is able to 
accurately track cellular structures in time-lapse data. 
 
1. Introduction 
 

Biological processes such as proliferation and motility of 
live cells are fundamental aspects that are studied to 
understand the multi-cellular development, wound healing, 
embryogenesis, inflammation, etc. [1-2]. In particular 
cellular motility analysis is important to understand these 
biological processes, as this opens the possibility to 
investigate various diseases including cancer, and to analyse 
the cellular response to different drug treatments [1]. 
Cellular motility is evaluated in sequences of time-lapse 
data and the aim of this process is to assign the cell-cell 
association in consecutive images. Typically, the cellular 
tracking and analysis is performed manually or using semi-
automated tracking techniques. Nonetheless with the 
development of image acquisition systems the amount of 
data to be analysed by biologists is constantly increasing 
and as a result the tracking process becomes a tedious and 
time consuming task. Thus, an automatic cellular tracking is 
more necessary than ever before. The existing cellular 
tracking algorithms are based on feature matching, motion 

prediction, and model evaluation. While these methods are 
able to determine the cellular tracks when the cells’ motility 
can be statistically evaluated, they show poor performance 
when applied to data characterized by Brownian motion or 
cellular proliferation.  

In this paper, a novel cellular tracking framework is 
detailed that is able to track multiple cells and accommodate 
cellular proliferation. To adapt to Brownian motion the 
neighbour information is utilised in a structural manner and 
during this process structures of cells are matched rather 
than individual cells. This method not only reduces the false 
associations caused by Brownian motion, but also allows 
the tracking of cells that are generated by proliferation. In 
addition, failure in data association at a particular time does 
not affect the cellular tracking in the following images of 
the sequence. In our implementation we used a graph 
generation technique based on Delaunay triangulation that is 
employed to encode the spatial relationship [11-12] between 
the cells contained in each image frame, where the cellular 
tracking process is performed by evaluating the changes in 
the graph structures in adjacent frames.  The proposed 
tracking algorithm is generic and in this paper we have 
evaluated its performance when applied to different cellular 
data.  

 
2. Previous methods 
 

Cellular tracking has become an active area of research 
and a large number of approaches have been proposed to 
solve the cellular association in time-lapse multi-cell data. 
In general these techniques were developed in conjunction 
with well-defined applications where the cell association 
was carried out using feature matching [3], motion 
prediction [7] and model evaluation [10] approaches.  

The feature matching and motion prediction techniques 
involve the segmentation of cells in each frame and the 
association of the segmented data contained in consecutive 
images is achieved by using pattern recognition techniques 
that enforce continuity in the spatial and temporal domain. 
For instance, in [3] the feature matching process was carried 
out for user-selected cells by minimizing a criterion based 
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on target location and feature similarity. The experiments 
demonstrated that this approach produces accurate results 
only when applied to sparse cellular datasets and is not able 
to handle the cell division and Brownian motion. A similar 
distance-based tracking approach is investigated in [4-5] and 
the experimental results further strengthened the conclusion 
that this solution alone is not suitable for robust cellular 
tracking.  

To address the problems faced by feature-based tracking 
algorithms, motion prediction techniques such as those 
based on Kalman filtering and Particle filtering were 
developed [6-7]. These approaches proved to be robust only 
in situations when the cellular motion can be approximated 
by statistical models. However, the motion model-driven 
tracking techniques may fail when applied to dense cellular 
data that is characterised by Brownian motion. Their 
performance largely depends on the suitable selection of the 
noise covariance and elaborate simulation/training 
procedures have to be applied to determine the model 
parameters prior to the application of the tracking 
algorithms to real cellular data.  

Techniques based on appearance and shape models were 
also applied in the development of cellular tracking 
algorithms. Using this approach, the cellular structure is 
initialised in the first frame and then propagated to 
subsequent images to identify the motility over the entire 
image sequence. For instance, techniques based on mean-
shift, level set and active contours have been explored for 
multiple cellular tracking in [8-10]. However, the main 
restriction associated with these techniques is the fact that 
they require significant overlapping between the model and 
the target. Thus, if data shows frequent divisions, the initial 
model may overlap with multiple targets and the cellular 
association become ambiguous [10]. Recently, a 
combination of several techniques has been investigated for 
cellular tracking in [8] and [10].  The experiments indicated 
that their performance increased when compared to that 
offered by individual techniques but the number of 
parameters that have to be adjusted is very large.  

Based on this brief overview of the cellular tracking 
algorithms we can conclude that most of the methods 
require user interaction for parameter estimation [3, 8] and 
the tracking results are inaccurate when applied to dense 
cellular data or data characterised by frequent cellular 
division. In this paper we propose a new tracking approach 
that is not hampered by problems caused by initialisation 
and is able to adapt to Brownian motion and cellular 
proliferation.  

   
3. Proposed tracking framework 
 

In our approach the tracking process evaluates the 
neighbourhood relationship between all cells in each frame 
and the cell association is performed by assessing the 
variation in relationship contained in consecutive frames of 
the image sequence (see Figure 1). Since tracking is carried 

out for cellular structures, the proposed solution does not 
require any initialisation procedure. In addition, our 
approach does not require user-defined constraints or the 
evaluation of feature similarity criteria in the process of cell 
association.  

 

 
 

Figure 1. Neighbourhood relationship overlaid on 
NE4C cell data 

 
 
  
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
The tracking framework has two major modules (see 

Figure 2): a) Centroid extraction module (CEM) and b) 
Tracking module (TM). The centroid extraction module 
performs the segmentation and the extraction of the centroid 
points by the use of adaptive threshold and morphological 
operations. The generated output (centroid coordinates) are 
passed to the tracking module.  

The tracking module constructs neighbourhood 
relationship graphs for the centroids by applying Delaunay 
triangulation. In this way, each node of the graph represents 
the cell position and edges define the spatial relationship 
between nearest cells. Using these graph representations, the 
problem of node (cell) association can be formulated as a 
graph matching minimisation. The similarity between two 
cellular graph structures is evaluated in terms of triangle 
matching by using the Hausdorff distance. The generated 
track segments are connected by using global constraints 
such as motion history and output the trajectory for each cell 
in the image.  

Figure 2. Overview of the tracking framework. 
Left – Centroid extraction module. Right – 

Tracking module. 
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3.1. Centroid extraction module 
 

The goal of this module is to segment the images and 
extract the centroid points for all cells present in the image 
data. Segmentation of phase-contrast images is a 
challenging task as the cells’ intensity values are not 
uniform and in general the cellular data is characterized by a 
high level of image noise. Thus, the simplistic thresholding 
operations are not able to achieve accurate cell 
segmentation. The main steps of the CEM are listed below. 

(A) To reduce the level of noise, the image is filtered 
with a 3x3 median operator. The Otsu thresholding is 
applied to obtain the initial segmentation of the image data. 
This thresholding scheme determines the suitable threshold 
between foreground and background in an adaptive manner.  

 

 
(a) 

 
(b) 

 
(c)  

(d) 
Figure 3. (a) Original image (NE4C cellular data).  
(b) Initial segmentation. (c) Final segmentation.  
(d) Centroid points. 

 
(B) Due to intensity variations, the cells are not 

completely segmented and morphological operations are 
applied to connect the incorrectly divided regions and fill 
the holes. In this process, the concave areas in the 
foreground data are connected using contour analysis and 
the small blobs are removed as they are generated by noise. 

(C) Finally, the map resulting after the application of the 
distance transform is evaluated to determine the centroids 
for multiple cells that are agglomerated into a cluster. The 
distance transform map is calculated starting from the 
contour of the region that provides the peak in the clustered 
region and the local peaks were selected as the centroids of 
the individual cells. Figure 3 shows the results after the 
application of the centroid extraction module. 
 
3.2. Tracking module 

 
In our approach cellular tracking is achieved by 

evaluating the neighbourhood relationship between 

Delaunay meshes calculated for two adjacent frames. 
Tracking module (TM) consists of a number of independent 
processes and they are shown in Figure 2. As illustrated in 
Figure 2, the coordinates of the centroid points calculated by 
CEM are the input for this module whereas the output 
consists of the tracks resulting after cell association. The 
main components of the TM will be detailed below.  

(A) To describe the neighbourhood relationship, we 
need to develop a technique that evaluates the spatial 
relationship between neighbouring cells using a graph 
representation. This is performed by applying Delaunay 
triangulation. This approach is able to generate the 
neighbourhood relationship between cells by partitioning 
the space covered by the controid points into a structure 
defined by a set of triangles.  

(B) The next step of the tracking module attempts to 
identify the triangle structures that are common in Delaunay 
meshes that are calculated for each two adjacent frames in 
the image sequence. The triangle matching process should 
be flexible in order to accommodate small variations that are 
caused by cellular migration and reject the large variations 
that are usually caused by proliferation. To achieve this 
goal, in this implementation the Hausdorff distance was 
employed to perform triangle matching. Figure 4 shows the 
Delaunay meshes calculated for two consecutive frames 
where the shaded structure returns the highest similarity. 

Our approach outperforms the tracking techniques 
presented in [11] and [12] as these approaches are not able 
to handle situations caused by proliferation and 
appearance/disappearance of cells close to the image border. 
This is caused by the fact that these approaches evaluate the 
matching process by performing the correlation between 
independent triangles and as a result ambiguous matching is 
possible if the cellular structure is severely distorted by 
significant migration. 

 

 
Figure 4. Neighbourhood relationship of 
adjacent images where each node represents 
the centroid of a cell. 

 
The node (target) association in the proposed tracking 

scheme is formulated as follows.  For each node i in the 
graph at time t-1, a matrix i

tT 1−  that represents pairs of 
triangles is constructed.  In this matrix, the first column 
stores the triangles that share the node i, while the second 
column stores the corresponding matching triangles in the 
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Delaunay graph generated for frame captured at time t. 
Similarly, j

tT represents the triangles for node j in the graph 
at time t. In this matrix, the first column stores the triangles 
that share the node j at time t while the second column 
stores the matched triangles in mesh at t-1. The nodes i and j 
are associated if the pairs of triangles in the corresponding 
transition matrices ( i

tT 1− and j
tT ) minimise the Hausdorf 

distance. For instance, Figure 6 shows the matrixes for the 
nodes P and Q in the graphs shown in Figure 5. 
 

 
Figure 5. Triangles surrounded to node P at 

time  t-1 and  node Q at time t.
 

These nodes can be associated, because one-to-one 
structure of triangle matching is possible and the fact that 
the matched triangles minimise the Hausdorff distance 
criterion.  This matching process was carried out for all 
nodes contained in the graph and trajectory is generated by 
connecting the same nodes until the time t.  
 

Node P  Node Q 
8a 8b 8b 8a 
29a 29b 29b 29a 
3a 3b 3b 3a 
15a 15b 15b 15a 
16a 16b 16b 16a 

Figure 6. Transition matrices constructed for the 
nodes P and Q shown in Figure 5. 

 
(C) The last stage of the tracking module performs the 

connection of broken cell trajectories that are generated by 
cellular merging/splitting in continuous frames. To connect 
the broken tracks we employ motion history analysis that 
performs a validity check for all tracks in the image 
sequence. In this way, if a cell is tracked for a long sequence 
and it loses the track close to the centre of the image (at time 
t), then the algorithm searches for tracks that are newly 
generated after the frame t and attempts to connect the 
broken tracks by evaluating the continuity in the spatial-
temporal domain.  
 
4. Experiments and Results  
 

The proposed technique was evaluated on NE4C, MDCK 
and HUVEC data. The spatial resolutions of these image 
sequences are 560x400, 400x350, and 670x510 respectively. 

The temporal resolutions are 5 minutes for NE4C data and 
10 minutes for others.  

Automated tracking results are compared against the 
manually tracked data and metrics such as the number of 
valid and invalid tracks and sensitivity are used to 
characterize the performance of the proposed automated 
tracking method. In this evaluation a track is defined as the 
cell trajectory from the time the cell is first detected until it 
leaves the areas imaged by the camera. Experimental results 
are depicted in Table 1.  
 
 

Cell 
sequence 

Frames Valid 
track 

Invalid 
track 

Sensitivity 

NE4C 140 23 2 92% 
MDCK 50 60 20 75% 
HUVEC 90 30 8 73% 

 
The results shown in Table 1 indicate that the proposed 
algorithm returns accurate tracking results when applied to 
NE4C data that is characterised by medium cell density but 
the performance of the tracking algorithm degrades when 
applied to MDCK and HUVEC cellular data that is 
characterised by high cellular density with a high frequency 
of cellular division (see Figure 7). Visual results that 
illustrate the performance of the proposed algorithm are 
shown in Figures 8 and 9. For visualization purposes, close-
up images that illustrate the performance of the proposed 
tracking algorithm in the presence of cellular division and 
agglomeration are shown in Figures 10 and 11.    
 

    
             (a)                           (b)                          (c) 
 

Figure 7. Cellular data evaluated in this paper. (a) 
NE4C. (b) MCDK. (c) HUVEC. 

 
 

  
                       (a)                                     (b) 

Table 1. Sensitivity of tracking 
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                      (c)                                     (d) 

  
                     (e)                                        (f) 
 

Figure 8. Tracking results when applied to NE4C 
cellular data. (a) Frame 1. (b) Frame 10. (c) Frame 

20. (d) Frame 30. (e) Frame 40. (f) Frame 50. 
 

 
 

 
 

Figure 9. (Top) Tracking results obtained after the 
algorithm is applied for first 50 frames. (Bottom) 

Tracking results shown in a 2D+time diagram (time 
is represented on Z axis). 

 
 

  
                         (a)                              (b) 

  
                         (c)                             (d) 
 

Figure 10. Tracking results in the presence of 
cellular division. (a) Frame 1. (b) Frame 13. (c) 

Frame 15. (d) Frame 20.  
 
 

  
                          (a)                              (b) 

  
                          (c)                              (d) 
 

Figure 11. Tracking results in the presence of 
cellular agglomeration. (a) Frame 1. (b) Frame 10. 

(c) Frame 15. (d) Frame 20. 
 
5. Conclusion 
  

The aim of this paper was to introduce a novel and fully 
automated framework for cellular tracking. The proposed 
framework encodes the spatial distribution of the cells in the 
image using a graph-based representation and tracking is 
performed by evaluating the similarities in the graph 
structures that are generated for consecutive frames. Full 
tracks for all detected cells in the image are generated using 
continuity constraints that are implemented based on motion 
history analysis. The developed tracking scheme is able to 
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adapt to Brownian type motion, does not require 
initialisation procedures, is generic and it can handle 
difficult situations generated by cellular division and 
agglomeration.    

This research is ongoing and future work will be focused 
on the inclusion of motion predictors and on the detailed 
analysis of the motion history to prevent the problems 
generated by over-segmentation in dense cellular data.  
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