51 research outputs found

    Does working memory training have to be adaptive?

    Get PDF
    This study tested the common assumption that, to be most effective, working memory (WM) training should be adaptive (i.e., task difficulty is adjusted to individual performance). Indirect evidence for this assumption stems from studies comparing adaptive training to a condition in which tasks are practiced on the easiest level of difficulty only [cf. Klingberg (Trends Cogn Sci 14:317-324, 2010)], thereby, however, confounding adaptivity and exposure to varying task difficulty. For a more direct test of this hypothesis, we randomly assigned 130 young adults to one of the three WM training procedures (adaptive, randomized, or self-selected change in training task difficulty) or to an active control group. Despite large performance increases in the trained WM tasks, we observed neither transfer to untrained structurally dissimilar WM tasks nor far transfer to reasoning. Surprisingly, neither training nor transfer effects were modulated by training procedure, indicating that exposure to varying levels of task difficulty is sufficient for inducing training gains

    QRTEngine: An easy solution for running online reaction time experiments using Qualtrics

    Get PDF
    Performing online behavioral research is gaining increased popularity among researchers in psychological and cognitive science. However, the currently available methods for conducting online reaction time experiments are often complicated and typically require advanced technical skills. In this article, we introduce the Qualtrics Reaction Time Engine (QRTEngine), an open-source JavaScript engine that can be embedded in the online survey development environment Qualtrics. The QRTEngine can be used to easily develop browser-based online reaction time experiments with accurate timing within current browser capabilities, and it requires only minimal programming skills. After introducing the QRTEngine, we briefly discuss how to create and distribute a Stroop task. Next, we describe a study in which we investigated the timing accuracy of the engine under different processor loads using external chronometry. Finally, we show that the QRTEngine can be used to reproduce classic behavioral effects in three reaction time paradigms: a Stroop task, an attentional blink task, and a masked-priming task. These findings demonstrate that QRTEngine can be used as a tool for conducting online behavioral research even when this requires accurate stimulus presentation times

    The evolutionary psychology of leadership trait perception

    Get PDF
    Knowles, Kristen K. - ORCID 0000-0001-9664-9055 https://orcid.org/0000-0001-9664-9055Many researchers now approach the understanding of how facial characteristics shape the perception of leadership ability through the lens of human evolution. This approach considers what skills and characteristics would have been valuable for leaders to possess in our evolutionary history, including dominance, masculinity, and trustworthiness. Moreover, it gives an understanding about why rapid categorisation of these social cues from faces is adaptive. In this chapter, I present evolutionary arguments for social inferences based on faces, and discuss how our understanding of this categorisation has shifted away from purely associative phenomena towards evolved, innate processes. I explain how the perception of leadership ability in faces is linked to variance in facial morphology, and how these morphologies tell us something about the individuals who carry them. Specific facial cues relating to leadership-relevant traits are discussed, as well as the underlying biological systems that accompany these traits. I also explain the importance of context and individual differences on the prioritisation of seemingly disparate facial cues to leadership: dominance and trustworthiness. I also discuss recent findings in this area which further extend these concepts to examine cues to leadership in women’s faces, generally overlooked by evolutionary psychologists, and how political ideology can interact with these effects.https://doi.org/10.1007/978-3-319-94535-4_5pubpu

    In search of attributes that support self-regulation in blended learning environments

    Get PDF

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Significance Communicating in ways that motivate engagement in social distancing remains a critical global public health priority during the COVID-19 pandemic. This study tested motivational qualities of messages about social distancing (those that promoted choice and agency vs. those that were forceful and shaming) in 25,718 people in 89 countries. The autonomy-supportive message decreased feelings of defying social distancing recommendations relative to the controlling message, and the controlling message increased controlled motivation, a less effective form of motivation, relative to no message. Message type did not impact intentions to socially distance, but people’s existing motivations were related to intentions. Findings were generalizable across a geographically diverse sample and may inform public health communication strategies in this and future global health emergencies. Abstract Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges

    Receptive field properties of neurons in the electrosensory lateral line lobe of the weakly electric fish, Gnathonemus petersii

    No full text
    Metzen MG, Engelmann J, Bacelo J, Grant K, von der Emde G. Receptive field properties of neurons in the electrosensory lateral line lobe of the weakly electric fish, Gnathonemus petersii. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008;194(12):1063-1075.The receptive field of a sensory neuron is known as that region in sensory space where a stimulus will alter the response of the neuron. We determined the spatial dimensions and the shape of receptive fields of electrosensitive neurons in the medial zone of the electrosensory lateral line lobe of the African weakly electric fish, Gnathonemus petersii, by using single cell recordings. The medial zone receives input from sensory cells which encode the stimulus amplitude. We analysed the receptive fields of 71 neurons. The size and shape of the receptive fields were determined as a function of spike rate and first spike latency and showed differences for the two analysis methods used. Spatial diameters ranged from 2 to 36 mm (spike rate) and from 2.45 to 14.12 mm (first spike latency). Some of the receptive fields were simple consisting only of one uniform centre, whereas most receptive fields showed a complex and antagonistic centre-surround organisation. Several units had a very complex structure with multiple centres and surrounding-areas. While receptive field size did not correlate with peripheral receptor location, the complexity of the receptive fields increased from rostral to caudal along the fish's body

    Electric imaging through active electrolocation: implication for the analysis of complex scenes

    No full text
    Engelmann J, Bacelo J, Metzen M, et al. Electric imaging through active electrolocation: implication for the analysis of complex scenes. Biol Cybern. 2008;98(6):519-539.The electric sense of mormyrids is often regarded as an adaptation to conditions unfavourable for vision and in these fish it has become the dominant sense for active orientation and communication tasks. With this sense, fish can detect and distinguish the electrical properties of the close environment, measure distance, perceive the 3-D shape of objects and discriminate objects according to distance or size and shape, irrespective of conductivity, thus showing a degree of abstraction regarding the interpretation of sensory stimuli. The physical properties of images projected on the sensory surface by the fish's own discharge reveal a "Mexican hat" opposing centre-surround profile. It is likely that computation of the image amplitude to slope ratio is used to measure distance, while peak width and slope give measures of shape and contrast. Modelling has been used to explore how the images of multiple objects superimpose in a complex manner. While electric images are by nature distributed, or 'blurred', behavioural strategies orienting sensory surfaces and the neural architecture of sensory processing networks both contribute to resolving potential ambiguities. Rostral amplification is produced by current funnelling in the head and chin appendage regions, where high density electroreceptor distributions constitute foveal regions. Central magnification of electroreceptive pathways from these regions particularly favours the detection of capacitive properties intrinsic to potential living prey. Swimming movements alter the amplitude and contrast of pre-receptor object-images but image modulation is normalised by central gain-control mechanisms that maintain excitatory and inhibitory balance, removing the contrast-ambiguity introduced by self-motion in much the same way that contrast gain-control is achieved in vision
    corecore