18 research outputs found

    Analytical design and evaluation of an active control system for helicopter vibration reduction and gust response alleviation

    Get PDF
    An analytical study was conducted to define the basic configuration of an active control system for helicopter vibration and gust response alleviation. The study culminated in a control system design which has two separate systems: narrow band loop for vibration reduction and wider band loop for gust response alleviation. The narrow band vibration loop utilizes the standard swashplate control configuration to input controller for the vibration loop is based on adaptive optimal control theory and is designed to adapt to any flight condition including maneuvers and transients. The prime characteristics of the vibration control system is its real time capability. The gust alleviation control system studied consists of optimal sampled data feedback gains together with an optimal one-step-ahead prediction. The prediction permits the estimation of the gust disturbance which can then be used to minimize the gust effects on the helicopter

    Study of an automatic trajectory following control system

    Get PDF
    It is shown that the estimator part of the Modified Partitioned Adaptive Controller, (MPAC) developed for nonlinear aircraft dynamics of a small jet transport can adapt to sensor failures. In addition, an investigation is made into the potential usefulness of the configuration detection technique used in the MPAC and the failure detection filter is developed that determines how a noise plant output is associated with a line or plane characteristic of a failure. It is shown by computer simulation that the estimator part and the configuration detection part of the MPAC can readily adapt to actuator and sensor failures and that the failure detection filter technique cannot detect actuator or sensor failures accurately for this type of system because of the plant modeling errors. In addition, it is shown that the decision technique, developed for the failure detection filter, can accurately determine that the plant output is related to the characteristic line or plane in the presence of sensor noise

    Indicators and Benchmarks for Wind Erosion Monitoring, Assessment and Management

    Get PDF
    Wind erosion and blowing dust threaten food security, human health and ecosystem services across global drylands. Monitoring wind erosion is needed to inform management, with explicit monitoring objectives being critical for interpreting and translating monitoring information into management actions. Monitoring objectives should establish quantitative guidelines for determining the relationship of wind erosion indicators to management benchmarks that reflect tolerable erosion and dust production levels considering impacts to, for example, ecosystem processes, species, agricultural production systems and human well-being. Here we: 1) critically review indicators of wind erosion and blowing dust that are currently available to practitioners; and 2) describe approaches for establishing benchmarks to support wind erosion assessments and management. We find that while numerous indicators are available for monitoring wind erosion, only a subset have been used routinely and most monitoring efforts have focused on air quality impacts of dust. Indicators need to be related to the causal soil and vegetation controls in eroding areas to directly inform management. There is great potential to use regional standardized soil and vegetation monitoring datasets, remote sensing and models to provide new information on wind erosion across landscapes. We identify best practices for establishing benchmarks for these indicators based on experimental studies, mechanistic and empirical models, and distributions of indicator values obtained from monitoring data at historic or existing reference sites. The approaches to establishing benchmarks described here have enduring utility as monitoring technologies change and enable managers to evaluate co-benefits and potential trade-offs among ecosystem services as affected by wind erosion management

    Indicators and benchmarks for wind erosion monitoring, assessment and management

    Get PDF
    Wind erosion and blowing dust threaten food security, human health and ecosystem services across global drylands. Monitoring wind erosion is needed to inform management, with explicit monitoring objectives being critical for interpreting and translating monitoring information into management actions. Monitoring objectives should establish quantitative guidelines for determining the relationship of wind erosion indicators to management benchmarks that reflect tolerable erosion and dust production levels considering impacts to, for example, ecosystem processes, species, agricultural production systems and human well-being. Here we: 1) critically review indicators of wind erosion and blowing dust that are currently available to practitioners; and 2) describe approaches for establishing benchmarks to support wind erosion assessments and management. We find that while numerous indicators are available for monitoring wind erosion, only a subset have been used routinely and most monitoring efforts have focused on air quality impacts of dust. Indicators need to be related to the causal soil and vegetation controls in eroding areas to directly inform management. There is great potential to use regional standardized soil and vegetation monitoring datasets, remote sensing and models to provide new information on wind erosion across landscapes. We identify best practices for establishing benchmarks for these indicators based on experimental studies, mechanistic and empirical models, and distributions of indicator values obtained from monitoring data at historic or existing reference sites. The approaches to establishing benchmarks described here have enduring utility as monitoring technologies change and enable managers to evaluate co-benefits and potential trade-offs among ecosystem services as affected by wind erosion management

    Combination therapy with oral treprostinil for pulmonary arterial hypertension. A double-blind placebo-controlled clinical trial

    Get PDF
    Rationale: Oral treprostinil improves exercise capacity in patients with pulmonary arterial hypertension (PAH), but the effect on clinical outcomes was unknown. Objectives: To evaluate the effect of oral treprostinil compared with placebo on time to first adjudicated clinical worsening event in participants with PAH who recently began approved oral monotherapy. Methods: In this event-driven, double-blind study, we randomly allocated 690 participants (1:1 ratio) with PAH to receive placebo or oral treprostinil extended-release tablets three times daily. Eligible participants were using approved oral monotherapy for over 30 days before randomization and had a 6-minute-walk distance 150 m or greater. The primary endpoint was the time to first adjudicated clinical worsening event: death; hospitalization due to worsening PAH; initiation of inhaled or parenteral prostacyclin therapy; disease progression; or unsatisfactory long-term clinical response. Measurements and Main Results: Clinical worsening occurred in 26% of the oral treprostinil group compared with 36% of placebo participants (hazard ratio, 0.74; 95% confidence interval, 0.56–0.97; P = 0.028). Key measures of disease status, including functional class, Borg dyspnea score, and N-terminal pro–brain natriuretic peptide, all favored oral treprostinil treatment at Week 24 and beyond. A noninvasive risk stratification analysis demonstrated that oral treprostinil–assigned participants had a substantially higher mortality risk at baseline but achieved a lower risk profile from Study Weeks 12–60. The most common adverse events in the oral treprostinil group were headache, diarrhea, flushing, nausea, and vomiting. Conclusions: In participants with PAH, addition of oral treprostinil to approved oral monotherapy reduced the risk of clinical worsening. Clinical trial registered with www.clinicaltrials.gov (NCT01560624)

    Health-related quality of life and hospitalizations in chronic thromboembolic pulmonary hypertension versus idiopathic pulmonary arterial hypertension: An analysis from the Pulmonary Hypertension Association Registry (PHAR)

    No full text
    Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare, morbid, potentially curable subtype of pulmonary hypertension that negatively impacts health-related quality of life (HRQoL). Little is known about differences in HRQoL and hospitalization between CTEPH patients and idiopathic pulmonary arterial hypertension (IPAH) patients. Using multivariable linear regression and mixed effects models, we examined differences in HRQoL assessed by emPHasis-10 (E10) and SF-12 between CTEPH and IPAH patients in the Pulmonary Hypertension Association Registry, a prospective multicenter cohort of patients newly evaluated at a Pulmonary Hypertension Care Center. Multivariable negative binomial regression models were used to estimate incidence rate ratios (IRR) for hospitalization amongst the two groups. We included 461 IPAH patients and 169 CTEPH patients. Twenty-one percent of CTEPH patients underwent pulmonary thromboendarterectomy (PTE) before the end of follow-up. At baseline, patients with CTEPH had significantly worse HRQoL (higher E10 scores) (ß 2.83, SE 1.11, p = 0.01); however, differences did not persist over time. CTEPH patients had higher rates of hospitalization (excluding the hospitalization for PTE) compared to IPAH patients after adjusting for age, sex, body mass index, WHO functional class and six-minute walk distance (IRR 1.66, 95%CI 1.04-2.65, p = 0.03). CTEPH patients who underwent PTE had improved HRQoL as compared to those who were medically managed, but patients who underwent PTE were younger, had higher cardiac outputs and greater six-minute walk distances. In this large, prospective, multicenter cohort, CTEPH patients had significantly worse baseline HRQoL and higher rates of hospitalizations than those with IPAH. CTEPH patients who underwent PTE had significant improvements in HRQoL
    corecore