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A B S T R A C T

Wind erosion and blowing dust threaten food security, human health and ecosystem services across global
drylands. Monitoring wind erosion is needed to inform management, with explicit monitoring objectives being
critical for interpreting and translating monitoring information into management actions. Monitoring objectives
should establish quantitative guidelines for determining the relationship of wind erosion indicators to man-
agement benchmarks that reflect tolerable erosion and dust production levels considering impacts to, for ex-
ample, ecosystem processes, species, agricultural production systems and human well-being. Here we: 1) criti-
cally review indicators of wind erosion and blowing dust that are currently available to practitioners; and 2)
describe approaches for establishing benchmarks to support wind erosion assessments and management. We find
that while numerous indicators are available for monitoring wind erosion, only a subset have been used rou-
tinely and most monitoring efforts have focused on air quality impacts of dust. Indicators need to be related to
the causal soil and vegetation controls in eroding areas to directly inform management. There is great potential
to use regional standardized soil and vegetation monitoring datasets, remote sensing and models to provide new
information on wind erosion across landscapes. We identify best practices for establishing benchmarks for these
indicators based on experimental studies, mechanistic and empirical models, and distributions of indicator va-
lues obtained from monitoring data at historic or existing reference sites. The approaches to establishing
benchmarks described here have enduring utility as monitoring technologies change and enable managers to
evaluate co-benefits and potential trade-offs among ecosystem services as affected by wind erosion management.

1. Introduction

Wind erosion is a major resource concern because it affects land
health, agricultural production, ecosystem function, human health and
climate (UNEP, WMO, UNCCD, 2016). The negative impacts of wind
erosion are generally recognized (Middleton et al., 2017; Duniway

et al., 2019) and strategies to manage wind erosion are urgently needed
for adapting to climate change in drylands (Webb et al., 2017a;
Edwards et al., 2019; IPCC, 2019). However, limited integrated in-
formation and crude estimates have long hampered wind erosion as-
sessments (Lal, 2001; Shao et al., 2011). These sources of uncertainty
continue to affect management responses. Allocating resources to

https://doi.org/10.1016/j.ecolind.2019.105881
Received 22 August 2019; Received in revised form 14 October 2019; Accepted 29 October 2019

⁎ Corresponding author.
E-mail address: nwebb@nmsu.edu (N.P. Webb).

Ecological Indicators 110 (2020) 105881

1470-160X/ Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/1470160X
https://www.elsevier.com/locate/ecolind
https://doi.org/10.1016/j.ecolind.2019.105881
https://doi.org/10.1016/j.ecolind.2019.105881
mailto:nwebb@nmsu.edu
https://doi.org/10.1016/j.ecolind.2019.105881
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolind.2019.105881&domain=pdf


manage wind erosion is difficult where the problem is unrecognized,
unquantified, and effects of management poorly understood (UNEP,
WMO, UNCCD, 2016). Improved monitoring to quantify wind erosion
would ensure that appropriate effort is directed toward its management
and balanced with investment in other resource concerns (e.g., invasive
species, habitat loss, biodiversity decline) that are more readily per-
ceived and quantified (Rodríguez et al., 2006). Because wind erosion
affects such a wide range of ecosystem services, reducing wind erosion
can have multiple benefits. Approaches are therefore needed to guide
wind erosion monitoring and inform management across agroecological
systems.
To be effective, wind erosion monitoring requires explicit articula-

tion of objectives for which monitoring information can be interpreted
and translated into management actions (Lindenmayer et al., 2013;
Fischman and Ruhl, 2016). Management objectives should express the
desired condition of resources to be achieved in a specified time frame
to meet land use goals (Elzinga et al., 1998; Decker et al., 2014).
Monitoring objectives should establish quantitative guidelines for de-
tecting whether desired resource conditions have been achieved
(Fig. 1). Monitoring objectives define desired values or trends in in-
dicators for some proportion of an assessment area and time period that
should be detected at a certain confidence level relative to a bench-
mark. Indicators are variables whose characteristics describe the state
of an attribute, such as wind erosion risk or air quality (Karl et al., 2017;

Angermeier and Karr, 2019). We define Benchmarks here as indicator
values, or ranges of values, that describe desired conditions that, when
exceeded, trigger adjustments to management practices, additional data
collection, or indicate management success. Identifying a core set of
wind erosion indicators, approaches to establish benchmarks, and de-
sign of credible systems to detect change would enable practitioners to
use monitoring data to make objective and decisive decisions about the
effectiveness of wind erosion management, and when current man-
agement strategies should be reviewed, amended, or changed alto-
gether.
The most coordinated approaches currently used to monitor in-

dicators of wind erosion and blowing dust are meteorological and
aerosol monitoring networks. Examples include the global Aerosol
Robotic Network (AERONET), United States (US) Interagency
Monitoring of Protected Visual Environments (IMPROVE), Campaign
on Atmospheric Aerosol Research network of China (CARE-China), and
Australian DustWatch program (Leys et al., 2008). Satellite observa-
tions and numerical modeling also support these monitoring efforts to
provide early warning and are integral to the World Meteorological
Organization’s (WMO) Sand and Dust Storm Warning Advisory and
Assessment System, SDS-WAS (WMO, 2015). However, with few ex-
ceptions (e.g., Leys et al., 2009; Love et al., 2019) these networks do not
address which areas are eroding, and why, with enough accuracy to
inform management. Recent developments in the use of remote sensing

Fig. 1. Illustration of how measurements, indicators and benchmarks are defined by monitoring and management objectives and are used to inform management
decisions for a case study to reduce soil degradation around the town of Buronga, southeastern Australia. In this example, benchmarks are defined for ground cover
and dust concentrations (after Leys et al., 2018) and could be expected to vary depending on management objectives and geographic location.
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for modelling (e.g., Chappell et al., 2019) and monitoring of global
drylands – e.g., the US Bureau of Land Management’s (BLM) public
lands Assessment, Inventory and Monitoring (AIM) program, Natural
Resources Conservation Service’s (NRCS) private lands National Re-
sources Inventory (NRI), Australian Terrestrial Ecosystem Research
Network’s (TERN) AusPlots, and rangeland monitoring of the Mon-
golian National Agency for Meteorology and Environmental Monitoring
(NAMEM) – have increased the information available to identify and
characterize dust source regions. However, data collected by these
programs are largely yet to be utilized to inform wind erosion assess-
ments and management (Webb et al., 2017b). This is because: 1) the
data are not easily accessible from the wide range of sources; and 2) the
capacity of these datasets to provide indicators, along with approaches
to establish benchmarks, has not always been apparent to managers.
This paper identifies how indicators and benchmarks can be used to

support wind erosion monitoring, assessment and management deci-
sions. Our specific objectives are to: 1) review indicators of wind ero-
sion and blowing dust that are currently available to practitioners; and
2) describe approaches and identify best practices for establishing
benchmarks to support wind erosion assessments and management. We
find that most monitoring efforts have focused on air quality impacts of
dust. This is because health impacts of degraded air quality are gen-
erally well understood, whilst land condition impacts of wind erosion
are not described well. Integration of wind erosion indicators collected
in the field and through remote sensing can provide the needed in-
formation to establish monitoring benchmarks critical to formulating
clear management objectives, evaluating resource condition and trend,
and assessing the efficacy of management actions.

2. Available indicators of wind erosion and blowing dust

Four types of indicators have been used by practitioners to support
quantitative and qualitative assessments of wind erosion and blowing
dust. These indicators include: 1) soil properties; 2) exposure to po-
tentially erosive winds; 3) land health attributes based on observations
and local/expert opinion; and 4) blowing dust occurrence and air
quality measures (Table 1). Direct measurements of aeolian sediment
transport and more technical indicators of soil and site susceptibility to
wind erosion (erodibility) have been developed for croplands and
rangelands (see review by Webb and Strong, 2011). However, these
require specialized instrumentation, and can be difficult to interpret, so
have not been widely adopted outside the aeolian research community
(Zobeck et al., 2003). Here we focus on indicators that are readily ob-
tained from measurements collected by producers, resource managers,
and agencies in the US and globally and which can be used to support
model-driven assessments.

2.1. Indicators based on soil properties

Following the 1930s Dust Bowl, the USDA Soil Conservation Service
(SCS) sought to identify properties of agricultural soils that describe
their susceptibility to wind erosion. Extensive work by W.S. Chepil and
colleagues identified soil texture (Chepil, 1953), the proportion of dry
aggregates< 0.84mm diameter at the surface soil (the “erodible frac-
tion”; Chepil, 1951), and calcium carbonate and organic matter con-
tents (Chepil, 1954), as indicators to classify soils into Wind Erodibility
Groups (WEGs). A Wind Erodibility Index (“I” factor) was subsequently
developed as an expression of dry soil aggregate stability under tillage
and abrasion for the Wind Erosion Equation (WEQ), an empirical
equation to estimate potential soil loss by wind (t ha−1 yr−1) (Woodruff
and Siddoway, 1965).
The WEGs and “I” factor are used by managers globally as indicators

of soil erodibility (NRCS, 2018). While the classifications are often as-
cribed to soils based on surface texture and appear easy to apply to
global texture maps (e.g., Hengl et al., 2017), the WEGs and “I” factor
are broad groupings with limitations that make them inaccurate inTa
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many soil-landscape settings, management contexts and soil conditions
(Webb and Strong, 2011). The indicators describe the susceptibility of
non-crusted soils to be mobilized by wind and do not necessarily re-
present their potential to emit fine dust. The WEGs and “I” factor
therefore do not work well for non-arable soils with physical and bio-
logical soil crusts (Woodruff and Siddoway, 1965). As the classifications
are static, they are also insensitive to land management activities that
disturb soils (e.g., due to machinery, livestock and fire) and weathering
forces (e.g., wet-dry, freeze-thaw) that change the availability of fine
silt and clay particles on the soil surface that affects dust emission
(Baddock et al., 2011). Because of these limitations, use of the WEGs
and “I” factor on crusted soils and as indicators of wind erosion is po-
tentially misleading. Other, more dynamic indicators of wind erosion
are often more appropriate.

2.2. Indicators of exposure to erosive winds

Ground cover (vegetative and non-vegetative elements, as viewed
from above) is a familiar concept to land managers and has often been
used as a dynamic indicator of land susceptibility to wind erosion (e.g.,
Webb et al., 2009; Pierre et al., 2018). National monitoring programs
and the United Nations Convention to Combat Desertification (UNCCD)
have adopted metrics of ground cover to monitor risk of wind erosion
and land degradation (Cowie et al., 2018). Data availability makes the
indicator attractive for local to regional wind erosion assessments.
However, fractional ground cover on its own is demonstrably a poor
indicator of exposure to wind erosion (Chappell et al., 2018).
Wind erosion is driven primarily by lateral wind forces (Raupach

et al., 1993). Wind momentum absorption and sheltering by surface
roughness elements therefore have the greatest effect on reducing se-
diment transport (Hagen and Armbrust, 1992). These processes are
moderated by the vertical structure, density and spatial distribution of
roughness, which are not described by ground cover alone (Fig. 2).
Vegetation shape, porosity and flexibility (including leaf and stem area)
also influence momentum absorption and sheltering (Mayaud and
Webb, 2017), and have been used as indicators of erosion risk in
croplands (Hagen and Armbrust, 1994; Armbrust and Bilbro, 1997).
However, without information on vegetation structure, as characterized
by the height and distribution of ground cover, assessments may se-
verely over- or underestimate erosion risk (Webb et al., 2014a). Alter-
natively, indicators of vegetation canopy height and canopy gap size
distribution (measured as the spacing between plant canopies) can be

collected in the field using standardized methods (e.g., Herrick et al.,
2018) and can be used to explain to the first order where wind erosion
may occur (Okin, 2008).
Indicators of vegetation structure have been measured extensively

across western US rangelands (Goebel, 1998; Toevs et al., 2011),
Mongolian grasslands (Densambuu et al., 2018), and at select cropland
sites (Webb et al., 2016), and could be used to assess wind erosion
across plot (< 1 ha) to regional (> 106 ha) scales (e.g., NRCS, 2011).
Recent remote sensing advances have enabled area-integrated measures
of surface sheltering from the wind (Chappell et al., 2010; Chappell and
Webb, 2016). The approach can be applied globally to estimate wind
erosion, filling gaps in field monitoring (Chappell et al., 2019). As ve-
getation structure is extremely sensitive to land management, it is
probably the best landscape scale indicator of wind erosion. One of the
limitations of remote sensing is that it is difficult to know the cause of
changes in an indicator. For this reason, landscape-wide monitoring
with satellite remote sensing should be coupled to site-based assess-
ments to aid interpretation.

2.3. Indicators of land health attributes including soil properties and
exposure

Several global initiatives to assess land health include indicators of
wind erosion (e.g., FAO and ITPS, 2010; International Resource Panel,
2016; Cowie et al., 2018). Of these, the Interpreting Indicators of
Rangeland Health (IIRH) assessment protocol (Pyke et al., 2002; Pellant
et al., 2005) has been applied at over 30,000 sites in the US and in-
tegrates 17 indicators of rangeland health into three attributes of soil
and site stability, hydrologic function and biotic integrity (Herrick
et al., 2019). Quantitative and qualitative indicators of wind erosion are
incorporated into IIRH assessments, including the presence of pedestals
and/or terracettes, bare ground fraction, presence of wind scouring,
blowouts and/or sediment deposition areas, litter movement, and soil
surface horizon loss or degradation. However, use of these indicators is
not recommended for monitoring or being agglomerated to in-
dependently generate national or regional assessments (Pellant et al.,
2005).
Qualitative indicators of soil and site stability and biotic integrity

provide information on the status of wind erosion at a site that may not
be obtained from quantitative indicators of soil erodibility and site
exposure to erosive winds. Interpreting qualitative indicators like those
used in IIRH requires a descriptive reference of the status of the

Fig. 2. Schematic illustrating main controls on the
susceptibility of landscapes to wind erosion in-
cluding indicators that are routinely collected by
agroecological (green labels) and air quality (blue
labels) monitoring programs, and which can be ob-
tained from models (black labels) using the agroe-
cological indicators and/or remote sensing.
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indicators for a defined “healthy” site (one with a minimal departure
from reference conditions), or classification for rating indicators that
enables practitioners to define relative expected values for a historical
reference (Herrick et al., 2019). This approach has the benefit of in-
corporating reference benchmarks into assessments that can help di-
agnose whether wind erosion is a problem, in addition to providing
another line of evidence in support of more quantitative monitoring and
modeling. However, wind erosion should not be assessed using land
health attributes alone as they reflect current land status, influenced by
past management, and not necessarily potential future erosion. Wind
erosion and dust emission that functionally impact land health and
degrade air quality may occur, or may have recently occurred, without
visual evidence to suggest that land is departing from a reference
condition. Related protocols like Landscape Function Analysis
(Tongway and Hindey, 2004) and Pedoderm and Pattern Class (Burkett
et al., 2013) consider similar indicators as IIRH, but use uniform criteria
to describe the degree of soil erosion across all types of land rather than
departure from a unique reference for each type of land (ecological
site).

2.4. Indicators of atmospheric dust and air quality

Dust monitoring globally has been coordinated through meteor-
ological observation networks and aerosol measurement networks
(Goudie and Middleton, 2006). Indicators used by these networks in-
clude: dust event frequencies obtained from visual observations (e.g.,
McTainsh et al., 1998; Shao and Dong, 2006; O'Loingsigh et al., 2010,
2014); atmospheric particulate matter (PM) concentrations measured
using high volume air samplers, lidar, and light-scattering laser pho-
tometers (e.g., Xin et al., 2015; Hand et al., 2016; Love et al., 2019);
and aerosol optical depth (AOD) obtained from ground-based sun
photometers and satellite observations (e.g., Holben et al., 1995;
Prospero et al., 2002; Ginoux et al., 2012). While these indicators di-
rectly relate to climate, visibility and human health impacts of dust,
attributing transported dust loads to specific upwind source areas and
land uses with enough accuracy to inform management is very chal-
lenging (McTainsh et al., 1998; Webb and Pierre, 2018). Additionally,
dust aerosol data are generally collected and interpreted by agencies, or
divisions of agencies, that have interests in air quality (e.g., environ-
mental protection agencies) and dust forecasting (e.g., WMO SDS-WAS)
but may have little or no formal connection to programs responsible for
monitoring and managing source area soils and vegetation. Such con-
nections are being addressed by the USDA-NRCS National Air Quality
Initiative, and New South Wales Office of Environment and Heritage
that collects and publishes hourly aerosol data on the Rural Air Quality
Network. These air quality data are then interpreted in conjunction
with remotely sensed ground cover, rainfall and fire data to report on
causes of wind erosion in south-eastern Australia via the Community
DustWatch project (Leys et al., 2008).

3. Indicators for multiple management objectives

Management decisions about wind erosion are rarely made in iso-
lation from other conservation and production objectives. To reduce the
need for costly dedicated monitoring, wind erosion indicators can be
selected that are used to assess the status, condition, and trend of other
ecosystem services of management interest; that is, are multi-use and
available from or have value to existing monitoring programs (Probst
and Stelzenmüller, 2015; Karl et al., 2017). Examples include vegeta-
tion foliar cover, canopy gap size distribution and vegetation height
that are widely used to monitor land health, invasive species and ha-
bitat quality (e.g., Goebel, 1998; Toevs et al., 2011) in addition to wind
erosion (Webb et al., 2016). Selection of multi-use indicators should
consider whether sampling used for their monitoring adequately cap-
tures the spatiotemporal variability of wind erosion to confidently de-
tect its change.

Wind erosion and dust emission models can be used to integrate soil
and vegetation indicators to support assessments at the farm scale (e.g.,
Pierre et al., 2018; Tatarko et al., 2019), at plot-to-regional scales using
plot monitoring data (e.g., Munson et al., 2011) and at landscape-to-
global scales using remote sensing (e.g., Chappell et al., 2019). By
combining effects of different indicators, models can enable more ro-
bust assessments of wind erosion than when indicators are used in-
dependently. However, available models can be difficult to para-
meterize without expert knowledge. Available models also provide
metrics that remain generally unfamiliar to practitioners as they are
difficult to interpret without a defined reference. These estimates in-
clude soil loss (t ha−1 yr−1), sediment transport rates (g m−1 s−1) and
dust emission (g m−2 s−1). Establishing benchmarks related to com-
monly measured soil and vegetation indicators is necessary for land
managers to understand how the indicators relate to sediment transport
and erosion rates across scales, and to assess whether sites have an
acceptable, or unacceptable, risk of erosion and act accordingly
(Pretorius and Cooks, 1989).

4. Establishing benchmarks for monitoring objectives

Benchmarks are needed to determine if observed indicator values at
assessed locations are within the range of desired conditions to meet
management objectives. If monitoring information shows that an in-
sufficient amount of a management area has met a benchmark, then
changes in management can be triggered (Lindenmayer et al., 2013).
Conversely, failure to set benchmarks can make it difficult to interpret
monitoring data because there are no decision criteria for how to use
observed values to evaluate management objectives (Elzinga et al.,
1998; Fischman and Ruhl, 2016). Critical for establishing wind erosion
benchmarks is an understanding of how aeolian processes respond to
natural environmental gradients through space and time, management
actions, and environmental change such as land cover change.
Wind erosion and dust emission are controlled by climate, soil and

vegetation properties that also determine site potential and the ecolo-
gical state of a site (Webb and Pierre, 2018). Site potential determines
the capacity of a site to produce certain kinds, amounts and proportions
of vegetation, and its responses to disturbances and management
(USDA, 2013). Vegetation dynamics determine the ecological states of a
site as plant communities and soil properties respond to endogenous
(e.g., competition, facilitation) and exogenous (e.g., disturbance) pro-
cesses (Bestelmeyer et al., 2003). Ecological states can be described by
vegetation structural features (e.g., ground cover/bare soil, canopy gap
size distributions and canopy height) associated with different plant
communities. Persistent state changes may occur when structural
thresholds are crossed that trigger shifts in feedbacks reinforcing new
structures (e.g., grassland to shrubland transitions; Fig. 3a,b,c). The
vegetation structure of states also impacts the function of aeolian pro-
cesses, with functional thresholds determining how aeolian processes
respond to changes in vegetation structure; e.g., the cover of canopy
gaps at which a non-linear increase in erosion occurs (Fig. 3d), and how
sites are impacted by erosion (Okin et al., 2006; Sasaki et al., 2018).
Models can be used to identify functional thresholds for wind erosion
based on inputs of vegetation structure (Fig. 3e). Structural and func-
tional thresholds are related (e.g., through ecological feedbacks) and so
provide a biophysical basis for defining benchmarks for different in-
dicator types relative to ecosystem dynamics (e.g., state changes), the
mechanics of aeolian processes, and erosion and dust impacts
(Bestelmeyer, 2006). Differences in site potential can be accommodated
in benchmarks by grouping sites based on land classification systems,
like ‘ecological sites’ with associated state-and-transition models
(STMs) to identify structural thresholds of concern (USDA, 2013;
Bestelmeyer et al., 2015).
Within this context, approaches to establish benchmarks may draw

on: 1) experimental studies reported in peer-reviewed literature; 2)
mechanistic and empirical models; and 3) distributions of indicator
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values obtained from reference site monitoring data. Following these
approaches, benchmarks can also be defined by non-ecological
thresholds, including human goals relating to health and social impacts
of blowing dust. For example, benchmarks can be set for levels of se-
diment production that have significant impacts on respiratory health,
degradation of viewsheds, or around the cost to replace or maintain
structures and equipment compromised by the erosive forces of blowing
dust. All of the approaches to establish benchmarks vary in their po-
tential for bias (and our ability to quantify that bias), ease of commu-
nication, applicability to management questions and policy mandates,
and availability in the geographic region of interest (Wiersma, 2005).
The most suitable approach may depend on the particular policy or
management objective(s) a benchmark is trying to address.

4.1. Benchmarks from scientific literature

Monitoring benchmarks should be established based on the best
available science and data, and whenever possible be supported by
published experimental studies. Field and laboratory wind tunnel stu-
dies addressing effects of soil properties (e.g., Chepil, 1944; Fryrear,
1985; Gillette et al., 1980) and ground cover levels (e.g., Wasson and
Nanninga, 1986; Leys, 1991) on functional thresholds for wind erosion
have been conducted to inform management. Results from field and
laboratory experiments can be used to validate benchmarks derived
from monitoring data (Section 4.3) by informing how wind erosion
responds functionally to changes in its controlling factors, and how
agricultural, ecological and human systems respond to different in-
tensities of wind erosion (e.g., Okin et al., 2006). Care should be taken
to ensure that literature used to inform benchmarks is rigorous and
relevant to the soils and potential vegetation at the geographic location
of interest (i.e., site potential). Available studies that could inform
benchmarks are largely limited to croplands and discipline-specific
journals. New research and a synthesis of soil and vegetation thresholds
for wind erosion across agroecological systems are therefore needed to

enable managers to access this information to develop benchmarks.

4.2. Model-informed benchmarks

Mechanistic and empirical models can be used in multiple ways to
support benchmark establishment. Mechanistic models can be used to
evaluate how much wind erosion could occur at a site, and identify
functional thresholds of concern for ecological sites and states. For
example, Webb et al., (2014) used the aeolian transport model of Okin
(2008) to identify erosion thresholds of ground cover and vegetation
canopy gap sizes across Chihuahuan Desert ecosystems. A current
limitation of mechanistic wind erosion models is that they have been
parameterized at small (plot) scales for few land cover types and, with
exception of the Wind Erosion Prediction System (WEPS, Tatarko et al.,
2019), they currently do not account for dynamic soil surface properties
like crusting and aggregation (Webb and Strong, 2011). Where im-
portant, other indicators of these properties should be considered
alongside model estimates to enable a more complete assessment of
whether management objectives are being met.
Empirical models can be used to support benchmark establishment

by identifying areas of similar ecological potential (e.g., Nauman and
Duniway, 2016; Nauman et al., 2017) and how indicator values mea-
sured at ‘reference’ sites vary across landscapes in response to natural
environmental gradients (e.g., Hawkins et al., 2010). This can be par-
ticularly useful for predicting the conditions of sites where historical
conditions are unknown, and predicting conditions that should occur in
the absence of anthropogenic impacts. Predicted ‘reference’ indicator
values can then be compared with observed values to assess the degree
of departure from the reference state.
Empirical models of the relationships among indicators (e.g.,

ground cover and dust concentrations) can also be used to support
benchmark establishment. For example, Leys et al (2018) showed how
empirical relationships based on monitoring data can be used to es-
tablish benchmarks to support the management objective of reducing

Fig. 3. Illustration of wind erosion in-
dicator values for (a) bare soil (%), (b)
percentage of canopy gaps> 100 cm, (c)
mean vegetation height (cm), and (d) total
horizontal sediment mass flux on log axis (g
m−1 d−1) resulting from vegetation state
change (grassland to shrubland transition)
in the sandy ecological site group in Major
Land Resource Area 42 in New Mexico,
USA. Indicator distributions were obtained
from 166 BLM AIM and NRCS NRI mon-
itoring plots and the wind erosion model of
Okin (2008) applied to the plot data fol-
lowing Webb et al. (2014). Vegetation
structural thresholds defining ecological
states were selected as benchmarks from
the 90th percentile of indicator values for
the reference black grama grassland.
Benchmarks are shown as dashed lines for
bare soil (a), canopy gaps (b) and mean
vegetation height (c), and their relation to
state-specific distributions and functional
threshold for aeolian sediment transport
(e).
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soil degradation by wind erosion (Fig. 4). They used dust activity (hours
with PM10 > 25 µgm−3) and rainfall data to build a regression model
of how dust activity increased with decreasing rainfall in a dust storm
year. A target number of dust hours (60 h) in the management area was
identified by the 75th percentile regression; where values> 60 h sug-
gested wind erosion exceeded that expected for the annual rainfall in
the management area. The dust activity target was then related to
fractional ground cover derived from 500m MODIS data (Guerschman
and Hill, 2018). Benchmarks were then identified from a regression
between dust activity and the proportion of the management area with
ground cover< 50% (Fig. 4).
A benefit of both mechanistic and empirical modeling is that the

approaches can provide quantitative error/uncertainty estimates that
can be considered in management decision making (Olson and
Hawkins, 2013). Accuracy and precision vary widely among available
wind erosion models (Shao et al., 2011), and these should be considered
in model selection relative to the desired accuracy and precision of
benchmarks. As relationships among indicators within models will be a
product of model formulation, it should be recognized that benchmarks
will also be influenced by model fidelity to aeolian processes. Model
sensitivity analyses and reviews can help users consider trade-offs in
fidelity, accuracy and precision in model selection and select appro-
priate benchmarks informed by model uncertainty (e.g., Darmenova
et al., 2009; Webb and McGowan, 2009).

4.3. Benchmarks based on desired or reference conditions

In rangelands, ‘reference conditions’ are illustrated by areas where
structural and functional indicators are within historical (e.g., pre-
agricultural) or desired value ranges and/or anthropogenic dis-
turbances are below thresholds thought to impact structure and func-
tion. Reference sites have been defined as locations in a ‘historical
condition’, ‘minimally-disturbed condition’, ‘least-disturbed condition’,
‘best available condition’ and ‘best attainable condition’ (Stoddard
et al., 2006). These diverse definitions have arisen from the difficulty of
identifying reference sites in rangelands due to their long land use
histories. For croplands and other intensively managed sites, reference
sites can be identified by other functional indicators of soil and plant

processes (as inferred from soil health; e.g., soil organic carbon, elec-
trical conductivity, microbial biomass). As criteria used to identify re-
ference sites can vary, the use of reference sites to define benchmark
conditions can be highly subjective and difficult to gain agreement on
among stakeholders. The end goal of management may not be to attain
reference condition, but to assess the degree of departure from the re-
ference state and decide whether such departures are desirable given
management objectives or if a new ‘improved’ condition should be the
target (Monaco et al., 2012).
Once reference sites have been identified, percentiles of reference

indicator values for an ecoregion could be used as benchmarks to
classify the condition of a monitoring site as having “major”, “mod-
erate”, or “minimal” departure from reference conditions, respectively
(Hughes et al., 1994; Stoddard et al., 2006). When possible, indicator
percentiles used to define benchmarks should be guided by the best
available knowledge of the structure and function of the system and of
the consequences of departure (e.g., Simon and Klimetz, 2008). Man-
agers may aim to keep anthropogenic disturbances below thresholds
thought to accelerate erosion and negatively impact agroecosystem
function. Using this approach without accounting for natural environ-
mental gradients within physiographic boundaries can lead to over- or
under-protection of sites due to natural environmental gradients in
indicator values. The amount of uncertainty is also strongly dependent
on sample size for which the indicators were measured (Webb et al.,
2019), and especially the criteria used to select the ‘reference’ popu-
lation. Managers should consider the benefits and limitations of ap-
proaches to defining reference sites as they impact benchmarks before
deciding on an approach.

4.3.1. Use of historical reference site networks
When historical reference sites can be identified, data collected at

networks of reference sites can be used to develop frequency distribu-
tions of reference site indicator values and identify structural thresholds
of concern (e.g., Herrick et al., 2006; Pollock et al., 2012). The dis-
tributions of indicator values are a characterization of the ‘historical’
range of variability expected to occur in a region in the absence of
certain anthropogenic impacts. Percentiles of the resulting distributions
can then be used to set benchmarks (e.g., for reference ecological states)
against which monitoring data can be compared and deviations from
reference conditions identified (Stoddard et al., 2006). Reference site
networks are typically grouped by, or modeled continuously within,
categorical variables such as physiographic boundaries (e.g., ecor-
egions) to account for differences in reference site potential and sub-
sequent variability resulting from factors such as climate and topo-
graphy (White and Walker, 1997). Difficulty identifying sites that have
not been influenced by land use and management can make ‘historical’
reference sites less practical to use and reference sites may instead be
defined for desired conditions.

4.3.2. Desired conditions from other monitoring data
When historical reference sites cannot be clearly identified, existing

monitoring data could be used to develop benchmarks based on sites in
an identified desired condition. First, monitoring sites could be
screened using land use and disturbance criteria, or specific attributes
related to the desired conditions (e.g., Stoddard et al., 2006; Ode et al.,
2016). Screening attributes should ideally be related to erosion poten-
tial, such as conditions defining classification to ecological states. There
should be sound reasoning to expect that sites represent the desired
condition. Benchmarks will correspond with percentiles of indicator
values for the selected sites in the desired condition.
When sites in a desired condition cannot be identified, sites in a

‘least disturbed’, ‘best available’ or ‘best attainable’ condition could be
used. However, setting ‘least disturbed’, ‘best available’ or ‘best at-
tainable’ conditions as the standard for management can have very
significant policy implications, particularly if current technology and
economic constraints (e.g., ‘best attainable’) define the reference. The

Fig. 4. Relationship between percentage area of summer (December, January
and February) ground cover in management area within 25 km radius from
Buronga, Australia, and total hours of dust (PM10 > 25 µgm−3) per year (July
to June). Standard linear regression (linear Buronga), confidence limit 95%
upper (CL95Up) and lower (CL95Lo), prediction limit 95% upper (PL95Up) and
lower (PL95Lo), and 75th percentile regression line (75th regression) are
shown. A benchmark can be set for ground cover in the management area based
on the 75th percentile regression to meet the target of 60 h of dust.

N.P. Webb, et al. Ecological Indicators 110 (2020) 105881

8



condition of ‘reference sites’ defined in any of these ways can vary
across space and through time as human impacts are disproportionately
distributed, change through time, and can have differing impacts under
certain physiographic conditions (e.g., Pickup et al 1998; Vanacker
et al., 2007; Bastin et al., 2012). An assumption in defining benchmarks
from current conditions is that these conditions are good enough. This
may be appropriate for meeting management objectives if the ‘best
available’ current condition matches the desired condition or ecological
state. However, management objectives may aspire to smaller wind
erosion and dust emission rates than are occurring today. Accepting a
baseline that represents, or is shifting towards, an alternative state or
degraded condition, or including too many degraded sites in the re-
ference, can reduce benchmarks, potentially under-protect assessed
sites and perpetuate soil degradation (Wiersma, 2005; Soga and Gaston,
2018). It is also conceivable that some ‘least disturbed’ sites may have
larger erosion rates than disturbed locations (e.g., with invasive grasses
that provide surface sheltering), and this should be considered against
other management objectives. To avoid unintended consequences, se-
lecting sites with specific attributes defined by ecological states should
be used to identify the ‘least erodible conditions’. Monitoring sites used
to establish benchmarks should be independent of those being assessed
to avoid introduction of circular reasoning into management decisions.

5. Establishing benchmarks for policy and regulation

Most monitoring benchmarks relating to wind erosion have been set
for policy and environmental regulations for air quality. The US Clean
Air Act of 1970 and Environmental Protection Agency’s (EPA) 1999
Regional Haze Rule are examples of regulatory actions to manage air
quality and visibility impairment, including impacts of mineral dust.
Similar regulations are in place at national, state and county levels
globally. The regulations typically stipulate concentrations limits (e.g.,
for wilderness areas and around cities and towns) as functional
thresholds for particulate matter with aerodynamic diameter< 10 μm
(PM10) and<2.5 μm (PM2.5) that may be suspended in the atmosphere
for long periods (e.g., hours to weeks) and impact human health. For
example, the US National Ambient Air Quality Standards (NAAQS) state
the 24-hour average PM10 concentration must not exceed 150 μgm−3

more than once per year on average over three years to meet the
NAAQS (EPA, 1997).
Policy and regulations may stipulate benchmarks, and so should be

referenced by managers, but they are not the mechanism used to de-
velop a given benchmark. Benchmarks adopted as policy should be
developed based upon scientific understanding and identified from one
or more information sources (e.g., scientific literature, models, mon-
itoring data) on the impacts of indicator conditions on the environment
and human health and safety. Science-policy briefs may outline prin-
ciples and approaches for establishing benchmarks. For example, the
UNCCD developed ‘Target-Setting Building Blocks’ to provide guidance
for identifying indicators, setting benchmarks, and assessing progress
toward Land Degradation Neutrality that are relevant to managing
wind erosion and other sustainability challenges (UNCCD, 2016).
To provide managers with flexibility in meeting targets and

avoiding unintended consequences, policy should encourage use of
indicators of outcomes (e.g., dust concentrations) over factors that de-
termine these outcomes. However, unless policy is made relevant to
managers and land management agencies, the existing disconnect be-
tween dust monitoring and land management (Section 2.4) is likely to
remain. Policy should therefore provide a clear path for agencies and
managers to link wind erosion and air quality outcomes to management
actions. This could be achieved, for example, by requiring natural re-
source management plans of land management agencies to address air
quality policy set out by environmental protection agencies. Estab-
lishing such links would also require models and analysis tools that
enable managers to connect indicators of controlling factors of wind
erosion to air quality impacts of dust. This would enable managers to

adopt locally relevant mitigation strategies (e.g., increase area sheltered
from wind erosion) and understand how effective management strate-
gies are (and why) in meeting broader policy objectives. Where in-
dicators of outcomes are too expensive to measure, management flex-
ibility may be promoted by identifying alternative indicators (e.g.,
vegetation cover and structure) that may be used to predict achieve-
ment of outcome-based targets, provided that the outcome remains the
overall objective. This both helps promote innovation as managers
focus on the desired result, rather than the regulation, and allows for
the introduction of new less expensive measurement technologies in the
future.

6. Best practices for establishing monitoring benchmarks

In the absence of existing benchmarks for wind erosion, managers
are faced with the need to use best professional judgement to develop
benchmarks from available information sources. In all cases, best pro-
fessional judgement should be based on relevant science and data
(Gordon et al., 2016). The approaches described above for establishing
benchmarks are not mutually exclusive in principle or practice. Using a
combination of approaches is therefore recommended. Multiple lines of
evidence should be provided for different monitoring indicators.
Benchmarks should reflect aeolian process mechanics whilst being re-
levant to broader land management objectives at relevant scales of
management. Air quality benchmarks may reflect blowing dust impacts
but should be related to the causal soil and vegetation controls in
eroding landscapes to directly inform management. A basic set of
principles for developing monitoring benchmarks should therefore be
followed.
Benchmarks should account for differences in site potential across

landscapes and thresholds of structural and/or functional concern. This
can be achieved by establishing benchmarks for areas defined by cli-
moedaphic groups (e.g., ecological sites; USDA, 2013) using informa-
tion that is relevant to the geographic area of interest. Linking wind
erosion indicators to ecological sites through applications like the
Ecosystem Dynamics Interpretive Tool (Bestelmeyer et al., 2016) would
improve our ability to set benchmarks, assess whether sites meet (or fail
to meet) monitoring objectives, and enable wind erosion to be con-
sidered alongside other ecosystem processes and services (e.g., Galloza
et al., 2017).
The amount and quality of information and compatibility of data

collection methods used to group sites and establish benchmarks should
be described. This includes policy documents, regulations and scientific
literature, which should be cited with a rationale for including (and
excluding) different information sources or studies. It is important to
understand the geographic location and sample size of data used to
establish benchmarks and how reference conditions were defined and
used to develop indicator distributions and models. Understanding how
model uncertainties and the shape and bias of indicator distributions
can affect benchmarks is important to determine whether model-in-
formed benchmarks will result in more or less protection of resources
than other data-driven approaches. All approaches for setting bench-
marks have their own limitations and are subject to error. Benchmarks
should be periodically reviewed and updated as new information be-
comes available. Benchmarks should also be updated to account for
shifting baselines in resource condition and ecological state transitions,
including emergence of ‘novel states’, in response to land use and cli-
mate change (Soga and Gaston, 2018). Overall, robust benchmarks
should enable managers to: (1) assess the degree or risk of departure of
sites from desired conditions; and (2) make objective decisions to
maintain agroecosystem structure and function and air quality.

7. Conclusions

Identifying indicators and establishing benchmarks for monitoring
wind erosion and blowing dust are required to quantitatively assess
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management outcomes and whether management objectives have been
met (UNEP, WMO, UNCCD, 2016). Numerous indicators of wind ero-
sion are routinely collected by coordinated monitoring programs, in-
cluding indicators based on soil properties and vegetation character-
istics, indicators of land health attributes, and indicators of air quality.
Some of these (e.g., air quality indicators) are widely used among
practitioners interested in the impacts of blowing dust, while available
soil and vegetation datasets are generally underutilized to inform wind
erosion assessments and management.
Using monitoring data to inform wind erosion assessments and

management requires indicator benchmarks that describe desired con-
ditions and can trigger adjustments to management practices, addi-
tional data collection, or indicate management success. Wind erosion
and air quality benchmarks have been established by policy and en-
vironmental regulations from peer-reviewed literature, but approaches
that use readily available soil and vegetation indicators are needed to
provide clearer links between land management and wind erosion
outcomes. However, care should be taken to account for shifting
baselines and potential under-protection of resources when using ex-
isting monitoring data to establish benchmarks. Few scientific studies
have quantified functional thresholds for wind erosion and research and
syntheses are needed, particularly for rangelands, to enable land
managers to access this information to establish benchmarks. The best
approach to establishing benchmarks is one that is based on rigorous
science and/or monitoring data and documents the rationale for se-
lecting indicator values or ranges based on their environmental and
human impacts. By promoting links between land management and
indicators of outcomes (e.g., through resource management plans),
policy can promote management flexibility for meeting benchmarks to
avoid trade-offs and unintended consequences. The approaches to es-
tablishing benchmarks described here have broad utility for managing
agroecological systems, as monitoring technologies change, and for
considering co-benefits of resource management among multiple eco-
system services.
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