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PREFACE

Initial funding for this study began in October 1976 under the
NASA Terminal Configured Vehicle (ATOPS) program. The main effort was
directed toward the application of a variation of a partitioned adaptive
control algorithm to the dynamics of a B-737 aircraft. The special
control law was one which could accommodate nonlinearities in the aircraft
dynamics. Particular emphasis was placed on the problem of guiding the
craft on optimum landing trajectories to provide quicker and safer land-
1ng approaches in adverse weather conditions. The details of this control
law and 1its development were reported in interim unpublished reports
dated 10/77 and 5/78. This work was done with the help of P. E. Zwicke.

Subsequently, with some shifts in personnel the project was
continued with some refinements in the main control law. Some in-
efficiency was incurred through the natural difficulty of transferring
computer code from one user to another. The emphasis was on simulation
of nonlinear measurements, 1incorporation of a realistic wind shear and
gust model and model reduction using a known correlated input as a
pseudo-input to each configuration model. These aspects were reported
on 2/79.

The project then suffered some delay and redirection. Takaing
over from William Lucas was Joel Brinkley. Joel's interest lay in

studying the detection of failures in the control system. This
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last phase of the project is reported herein and provides a com-
pletion of the project (8/82).

All of the investigators would like to take this opportunity to
tnank the associated NASA personnel for their support and encour-
agement; in particular, Dr. T. M. Walsh for his confidence in get-
t1ng our project started, Dr. J. R. Creedon for the bulk of the
technical guidance and patience with our staffing problems and R.

M. Hueschen and Nesim Halyo for their assistance and work on the

technical aspects.
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i 1. INTRODUCTION

One of the major goals of the NASA Terminal Configured Vehicle
(TCV) project is automatic control of aircraft in adverse weather for
tquicker, safer landings. The ATOPS B-737 was chosen for the program
because of its nonlinear flight envelope. In addition to the nonlinear
plant, some of the aerodynamic parameters are only partially known which
makes it a difficult control problem. This part of the problem has
been solved by Zwicke and Lucas (14,15,16); howevgr, the effect of
actuator and sensor failures was not explored. Sensor and actuator
failure detection and compensation is an extremely important part of
the overall aircraft control because if a failure is not detected and
the controller is not properly compensated, the flight may end disas-
trously. In this thesis only the failure detection problem is under-
taken except to show that the estimator part of the control algorithm
used by Zwicke (14,16) can adapt to properly modeled sensor failures.

The first method to be used for failure detection is the configu-
ration detection algorithm from the Modified Partitioned Adaptive
Controller (l4). This method uses a bank of parallel Kalman filters
to predict the state of the various configurations and determines the
correct configuration by the whiteness of the noise in the filter
residue. The failure detection technique is tested to determine the
types of failures it will detect and under what conditions this detec-
tion occurs. The most important criterion is the detection technique's
ability to accurately and quickly determine actuator and sensor failures

in the presence of sensor noise with inaccuracies in the plant model.



The second method to be used for failure detection is the failure

detection filter, FDF, technique developed by Beard (1) and Jones (2).
Since this failure detection technique was developed, little work has
been done on estimation theory to determine how the noisy plant output

is associated with the line or plane characteristic of a failure. A

solution to this problem is presented and the FDF technique is tested

with the same failures and conditions as the first method. Again the

most important criterion is the FDF technique's ability to detect fail-
ures in the présence of noise with inaccuracies in the plant model.

In the past a number of different techniques have been used to

detect actuator and sensor failures. The primary emphasis has been to

detect sensor failures. The simplest schemes involve redundant hard-

ware; but with the development of the computer, more and more schemes

have been developed which depend on computational algorithms rather

than redundant hardware to detect failures. Only a brief summary of

the work done in the past on failure detection is presented here. A

detailed summary of the different failure detection techniques can be

found in (3).

Voting schemes are the simplest sensor failure detection scheme.

In most voting schemes the output of three or more redundant sensors is

compared. If the output of one of the sensors differs from the others,

it is declared failed and removed from future consideration. This
method is easy to implement, but can not detect soft failures or small

biases and does not take advantage of information available from non-

identical sensors. The following papers give examples of this method



(4,5,6,7). A modification of this method involves two sensors compar-
ing outputs and if a difference arises, an analytical method is used
to determine which sensor has failed. This reduces redundant hardware
but at the cost of increased complexity. Work in this area has been
done by Deckert, et al. (8). Another modification of the straight
voting procedure is the method developed by Chien (9). This method
uses a time weighted average of measurement errors to detect failures
that memoryless voting schemes would miss.

In addition to voting schemes, a large number of failure detection
techniques have been developed based on the likelihood ratio developed
by Van Trees (10). The extension of this, the Generalized Likelihood
Ratio or GLR, has been used in many applications because it is optimal
in a statistical sense; however, it can become extremely complex and
this is its major limitation. Caglayan and Montgomery (11,12) devel-
oped a technique using a bank of parallel Kalman filters to predict
the state of all possible failure modes and used the GLR to find the
probability of each configuration. Various other methods have been
employed to reduce the complexity of the full GLR method and a good
synopsis of these is done by Willsky (3).

Another method to detect actuator and semsor failures is the
Failure Detection Filter, FDF, technique developed by Beard (1). This
failure detection method can detect a wide range of failures in
actuators and sensors or dynamic changes in one element of the system
dynamics matrix or the input coefficient matrix. The filter is

designed so that in the no failed state the filter estimator tracks



the state estimator. When a failure occurs, the filter is designed
to accentuate the failure in a predictable manner in the filter

residual. A design algorithm was developed for continuous, linear,

time-invariant, deterministic systems. Jones (2) extended the FDF

method to stochastic and discrete systems. He also demonstrated that

the FDF could be used as a suboptimal state estimator.



2. KALMAN FILTERS FOR FAILURE DETECTION

2.1 Introduction

The Kalman filter has been used for a number of years for a variety
of applications. 1Its wide use is due primarily to its prediction cor-
rection structure for state estimation and its noise filtering capa-
bilities. The Kalman filter is optimal in the sense that it minimizes
the mean square error. In this chapter the Kalman filter is used to
predict the state of various plant models in the presence of white
noise. The whiteness of the filter residue, the plant output minus
the output predicted by the Kalman filter, is used to determine the
actual configuration.

The decision theory used in this chapter was presented by Moose
and Wang in (13) and was developed for randomly switching plant con-
figurations. These randomly switching plant configurations may be
actuator or sensor failure models as long as the system remains observ-
able and controllable after the failure.

One of the purposes of this chapter is to review the B737 project
sponsored by NASA and show that the algorithm developed by Zwicke (14)
can adequately control the alrcraft after a sensor failure. The other
purpose of this chapter is to show that the method developed by Zwicke,
Moose, Wang, et al. (13,14) can be modified to detect both sensor and

actuator failures and present an example for simulation.




2.2 The Structure of the Kalman Filter

The discrete time description of a linear system corrupted by

noise is

x(k+1)

Ax(k) + Bu(k) + Gw(k)

y (k)

Cx(k) + Hv(k)

where,

x 1s an nxl state vector

u is an mxl input vector

y is an rxl output vector

w ~ is an nx1l input disturbance vector
v is an rxl measurement noise vector
A is an nxn system dynamics matrix

B is an nxm input coefficient matrix

C is an rxn measurement coefficient matrix

(2.2.1)

(2.2.2)

The vectors w and v are zero mean white Gaussian processes with vara-

ances Q and R respectively.

The Kalman filter is described by equations,
z(k+1/k) = Az(k) + Bu(k)
z(k+l) = z(k+1l/k) + K(k+1) [y (k+l) - Cz(k+1l/k)]
The Kalman filter gain K is calculated as follows

M(k+1) = AP(K)AT + GQGT

(2.2.3)

(2.2.4)

(2.2.5)



K(k+1) = M(k+1)Cl[CM(k+1)CT + HRHT) > (2.2.6)
P(k+l) = [I - K(k+1)CIM(k+1)[I - K(k+1)C]T + K(k+L1)HRHTKY (k+1) (2.2.7)
2.3 The B737 Project

A major goal of the NASA Terminal Configured Vehicle (TCV) project
is automatic landing of aircraft in adverse weather on a predetermined
glideslope with a linear decrease in both velocity and altitude. The
automatic control 1s complicated by the nonlinear dynamics of the air-
craft and the fact that many of these dynamics are not precisely known.
In addition many aerodynamic coefficients are in tabular form and some
of these are only estimated. The nonlinear measurement model and
measurement errors further complicate the problem.

In the past, work has been done by Moose, VanLandingham, Zwicke
and Lucas (14,15,16) on the control of the longitudinal dynamics of the
B737 ignoring the possibility of a sensor failure., The goal of this
part of the project is to show that satisfactory control of the air-
craft can be maintained after a sensor failure.

In this section there is a brief review of the work done by Zwicke
(14) and a development of the sensor failure model.

2.3.1 The B737 Model

The B737 is a highly nonlinear plant and is linearized about ten
operating points using Taylor Series Expansion. From these ten plant
models the longitudinal dynamics of the airplane can be adequ?tely
represented for the adaptive control algorithm. The assumptions that

are made to further simplify the problem are:



1) Control inputs are elevator perturbation and throttle rate.
2) All lateral variables and their rates are small such as yaw,
roll and sideslip.
3) The pitch angle is small.
4) All equations are linearized around
u, steady state inertial speed x-direction
vy steady state inertial speed z~direction
Bo steady state pitch angle
5) Perturbations of the pitch angle, 8, are small so cos6 = 1
and sinf = 8.
The B737 plant model 1is described by equations (2.2.1) and (2.2.2).
The system dynamics is represented by fourteen state variables. Nine
of these correspond to plant states and the other five state variables
were added for the simulation of correlated wind gusts. The input
coefficient, B, matrix has two rows: one indicating the effect of the
throttle rate on the system and the other the effect of the elevator
perturbation on the system. The measurement coefficient, C, matrix is
a nonlinear combination of the states. It has been linearized about an
operating point and is accurate for small values of noise.
2.3.2 The B737 Controller
The control technique used in the B737 project is the Modified
Partitioned Adaptive Controller or MPAC developed by Zwicke (14). The
controller computes a system input based on the plant configuration Si
and the reference input. A bank of parallel Kalman filters operates

independently on noisy measurements. Each filter produces a state




estimate Zi(k+l). This state estimate is multiplied by a feedback gain
calculated for the ith configuration. In addition to the state vari-
able feedback, two other terms must be added to the input for each
configuration. The reference input, q, is scaled so that zero steady
state error can be achieved, and a linearization constant from the
Taylor Series Expansion associated with each model must be added.

Therefore, the input is of the form

Ui(k) = Fi(k)zi(k) + Hiq + T (2.3.1)

i

Ui(k) is the input calculated for the ith configuration
Fi(k) is the time varying feedback gain for the ith configuration

Zi(k) is the Kalman estimate for the ith configuration

Hi is the scaling constant for zero steady state error

q is the reference input

'1‘i is the Taylor Series Expansion constant for the ith
configuration

In order to calculate the overall system input a weighted sum of the

individual inputs Ui is computed. The weighting coefficients Hi are

calculated as follows,

P, (r(kt+l)) 0 8., 46
M(k+l) = C(k+l) 1 ‘. . :11..:1m (k) (2.3.2)
0 pm(r(k-!-l)) eml. . emm

where

Py (r(k+l)) = P (y(k+1)/S(k+l) = S, (K), y(k)) (2.3.3)
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and

eji is a semi-Markov transition parameter

C(R+l) is a normalizing constant

T(k+1) is a vector containing the probability of each plant
configuration
ri(k+l) is the plant output minus the ith

filter output
The probability density p(y(k+l)/S(k+1l) = Si’ §(k)) is approximated by
a Gaussian density for the cases where the probability of transition
between adjacent samples is small and is given by
- _ T -1
pi(ri(k+l)) Di exp{-1/2 r, (k+l)Vi ri(k+1)} (2.3.4)

where,

Vi is the measurement residual covariance for the ith filter

-M/2 -1/2
D, = (2m) Ivi[ (2.3.5)

The semi-Markov transition probabilities eji in (2.3.2) represent the

probability of changing from configuration Si to S An excellent

discussion of how to choose the semi-Markov matrix can be found in
(14). When the largest weighting coefficient Hj(k+l) falls below a
predetermined threshold, the Kalman gains for all the configurations

are reset in order to improve the convergence of the filters when

the plant moves from one configuration to another. This threshold is

found by trial and error and is dependent primarily on the signal to

noise ratio.

2.3.3 The Sensor Failure Model for B737

A sensor failure is modeled as zero output from the failed sensor
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which is equivalent to a zero row in the C matrix in equation (2.2.2).
The sensor failures that were included as possible configurations were
those which (A, C) from equations (2.2.1) and (2.2.2) remained an

observable pair after the sensor failure.
2.4 Actuator and Sensor Failure Detection using Kalman Filters

The Kalman filter approach to detecting fallures has many similar-
ities to the estimator part of the MPAC developed in the last section.
The Kalman filter approach to detecting failures developed in this
thesis is a slight modification of the work done by Moose and Wang
13).

The method developed in this section can detect sensor or actuator
failures in a system which is observable after the failure. For each
failure a model is developed. The actuator and sensor failure models
are developed in sections 3.4.1 and 3.4.2 respectively. A bank of
parallel Kalman filters, one filter for each possible failure mode,
is run with each filter independent of the others. The filter residue
from each filter is then used to compute the probability of that state,
using equation (2.3.2). As in the MPAC when the largest probability
Hi(k+l) falls below a predetermined threshold, the Kalman gains are
reset to improve convergence,

2.4.1 Actuator Failure Model

A failure in the :l.th actuator is modeled for the Kalman filter
detection technique by modifying the ith column of the B matrix, bi'
A constant bias is modeled by multiplying bi by a constant not equal
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to one. The magnitude of the bias is one minus the constant multi-
plier. A zero failure is modeled by replacing bi by a vector with
all zero entries.

2.4.2 Sensor Failure Model

A failure in the ith sensor is modeled for the Kalman filter
detection technique by modifying the ith row of the C matrix, Ci' A
constant bias is modeled by multiplying Ci by a constant. The magni-
tude of the bias is found exactly as it was in section 2.4.1. A zero

failure is modeled by replacing C, with a vector containing all zeros

i
and a soft failure in the‘ith sensor is modeled by increasing the ith
diagonal element H which increases the noise on the ith sensor.

2.4.3 Boiler System Example El

This is an example of a boiler system that might be used on board
ship and is adapted from an example in (17). There are two boilers on
board but only one will be modeled. It is assumed that the other is
operating at steady state and at the desired operating point. There
are three states of interest: 1) pressure deviation, P, around 20
bars; 2) temperature deviation, T, around 300°C; 3) the integral of
the energy/KG of the superheated steam about the desired operating
point (20 bars and 300°C). The control implemented would try to keep
P and T at the operating point and keep the integral of the steam
energy zero; however, in this thesis only detection of an actuator
or sensor faillure is considered.

The three inputs to the system are fuel, superheated steam and

saturated steam. The steam can be considered an input when it is
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used to preheat the boiler or to meet the operating conditions when

there is a zero or low fuel rate to the boiler.

The continuous time system is modeled

x = Ex + Fu

y = Cx

where the state variables in the vector x are

x is an intermediate variable

and the inputs u are defined

Y

)

u

3

The continuous model matrices are

-

—

0
0
0

.00338

396x10°
1250/15
0

0

3

4

0
-1/154
0

.02363

325x10°
1.7
1375/83

0

is the flow rate of fuel (Mg/hr)

is the flow rate of saturated steam (Mg/hr)

0 0
-1/154 0
-1/183 0
0 0_
4 _325x107%
-629.35%10™>
-662.65
0

is MJ/kg of energy in the steam integrated over time

is the flow rate of superheated steam (Mg/hr)

(2.4.1)

(2.4.2)

is the deviation of pressure around 20 bars in the boiler

is the deviation of the output temperature around 300°C

(2.4.3)

(2.4.4)
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c=|13 1 0 1 (2.4.5)

The continuous time system is converted to a discrete time system

with a forty-second sampling time. The discrete time model is given by

x(k+1) = Ax(k) + Bu(k) + Gw(k) (2.2.1)
y(k) = Cx(k) + Hu(k) (2.2.2)
where
1 0 0 0]
0 .77125 -.1796 0
A= (2.4.6)
0 0 .61759 0
| .1352  .832419 -.09633 1 _
[ 15.84 1.3 -1.3 ]
285.935 ~7.65 T 2679.275
B = (2.4.7)
0 525.812 ~21032.44
| 140.98 6.998 893.619 _

c=|3 1 0 1 (2.4.8)

Below are examples of the system with a 107 bias failure for both

an actuator and sensor failure. Other failures are modeled similarly

following the rules in section 2.4.1 or 2.4.2. A 107 bias failure in
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the fuel flow rate, actuator one, is modeled by letting B become B'

where B' is

™ 16.94 1.3 -1.3 ]
314,53 -7.65 2679.275
B' = (2.4.9)
0 525.812 -21032.44
| 155.078 6.998 893.619 _

A 10% bias in the first sensor is modeled by letting C become C' where

Cc' is

c' = 3 1 0 1 (2.4.10)



3. FAILURE DETECTION FILTERS FOR FAILURE DETECTION

The failure detection filter, FDF, was first developed by Beard (1)
for continuous, deterministic, time-invariant, linear systems. Jones
(2) extended the FDF theory to include discrete and stochastic systems.
However, since this work was done, very little research has been done
either on further development or application of FDF theory. In this
chapter the basic concepts and design algorithms are presented so that
a reader will have the tools to design and use FDF's to detect actuator
or sensor failures. In addition a configuration estimation technique
is developed that gives the probability that a noisy plant output is
associated with a line or plane characteristic of an actuator or sensor
failure.

3.1 Development of Actuator and Sensor Failure for Rank of C Greater

Than or Equal to N

The purpose of this section is to give an introduction to the
failure detection filter. The case demonstrated in this section, the
rank of the measurement coefficient matrix greater than or equal to
the rank of the system dynamics matrix, demonstrates many of the basic
concepts in failure detection filters. A more complete development of
the topic may be found in (1,2). It should be noted that the failure
models shown in this section are valid for C of any rank.

The plant model used in this section is found in equations (2.2.1)
and (2.2.2); however, v(k) and w(k) will be identically zero.

The failure detection filter equation is

16
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z(k+l) = Gz(k) + Dy(k) + BFuD(k) (3.1.1)

where (3.1.1) is valid for C of any rank and (3.1,2-6) are valid for

Rank[C] greater than or equal to n. The parameter G is defined
G=A-DC (3.1.2)
G = ol (3.1.3)

where |o| must be less than one for a stable filter. The detector

gain D is defined for m=n
-1
D= (A-G)C (3.1.4)

or form > n

T

D=(a-6G)COtc (3.1.5)

and BF is defined
BF =B (3.1.6)

It is important to note that, for the rank of the C matrix
greater than or equal to n, equations (3.1.1-6) yield a filter that
will detect any single actuator of sensor failure.

3.1.1 Actuator Failure

A failure in the ith actuator is modeled

u(k) = udD(k) + er, n(k) (3.1.7)
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where -

ub (k) is the desired control input

n(k) is an arbitrary function of time sampled at t = kT

er, = [ 07} (3.1.8)

r
Q e

where the 1 is in the ith position.

Example E2 is an example of an actuator failure with the rank of C

equal to n. Assume,

c=1 (3.1.9)

and the FDF is defined by equation (3.1.1)

z(k+1l) = Gz(k) + Dy(k) + BFuD(k) (3.1.1)
where
y(k) = x(k) (3.1.10)
G = oI (3.1.11)
D=A-o0l (3.1.12)

BF = B (3.1.13)
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u(k) = udD(k) + er, n(k)
The FDF residue is
e(k+l) = x(k+l) - z(k+l)
where this can be expanded to

e(k+l)

Ax(k) + Bu(k) - Gz(k) - Dx(k) - BFuD(k)

e(k+l) = Ax(k) + BuD(k) + Beri n(k) -

cIz(k) - (A - oI)x(k) - BuD(k)

oIx(k) + Beri n(k) - olz(k)

oIl(x(k) - z(k)) + bi n(k)
where

bi = Beri

The solution to equation (3.1.19) is

k-1 .
el) = @D* @ + ] @I b n(h)

j=0
k-1

= @ e+ § @b 0
j=0
k=1

= of €(0) + by Zo %371 a)
j=

The steady state solution to (3.1.23) is

k-1 .
e(®) = b, ] @n* 3 ag)
3=0

(3.

(3.

(3.

@3.
(3.

(3.

(3.

(3.

(3.

(3.

3.

.14)

.15)

.16)

.17)
.18)
.19)

.20)

.21)

.22)

.23)

.24)
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It should be noted that bi is a vector and the rest of equation

(3.1.24) 1is a scalar and that if n(k) is a constant then

k-1

lim ) g3l n(j) = constant (3.1.25)
k=« j=0

’

Also, it can be shown that in equation (3.1.22), e(k) does not depend
on the rank of C and is valid for any C if oI is replaced by (A-DC)

in that equation.

However, e(k) 1s not an accessible signal., The accessible signal

is
e'(k) = Ce(k) (3.1.26)
= y(k) - Cz(k) (3.1.27)
k-1
=, I hag (3.1.28)
j=0

Therefore, the error vector Cbi is indicative of a failure in the ith

actuator for C of any rank and the magnitude of the failure may give
information about the nature of, the failure. It can easily be shown
that in order to identify a failure in the ith actuator, Cbi must be
independent of ij for all j#i. If there are two dependent vectors
Cbi and ij, i not equal to j, then the direction aleone will not supply
enough information to determine which actuator has failed.

3.1.2 Sensor Failure

A failure in the ith sensor is modeled

y(k) = cx(k) + em, n(k) (3.1.29)
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where n(k) is an arbitrary function of time sampled at t=kT and

em, = | 1 (3.1.30)

where 1 is in the ith position.
Example E3 is an example of the ith sensor failing with the rank

of C equal to n. Assume
c=1I (3.1.31)
The FDF is defined by equation (3.1.1)
z(k+l) = Gz(k) + Dy(k) + BFu(k) (3.1.1)

where G, D and BF are defined by equations (3.1.11-~13) and where u(k)

is the desired input defined
u(k) = ub(k) (3.1.32)
The sensor outputs are defined by (3.1.29). The FDF residue is

x(k+l) = z(k+l) = Ax(k) + Bu(k) -

[oIz(k) + D(x(k) + em, n(k)) + Bu(k)] (3.1.33)

e(k+l) = oI(x(k) - z(k)) - Demi n(k) (3.1.34)
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e(k+l) = oI e(k) - Demi n(k)
The solution to equation (3.1.35) is

k-1

) = o €0 = § o pem n(y)
3=0
The settled out signal is
k-1
e(k) = - Dem, Z ok-j-l n(j)
j=0

As in the actuator failure case, c(k) is not accessible.

signal is
e' (k) = y(k) - Cz(k)
e'(k) = Ce(k) - em, n(k)

ksl k-l
< -CDemi 2 (cI) n(j) + em, n(k)
j=0
since
D=A-o0l
then,
Demi = (A - cI)emi

and letting

Aem, = a

i i

k-1 . k-1
e'(k) = a; Z ck-J-l n(j) + |El(k) + X ck-j n(j):lemi

j=0 j=0

(3.1.35)

(3.1.36)

(3.1.37)

The accessible

(3.1.38)

(3.1.39)

(3.1.40)

(3.1.12)

(3.1.41)

(3.1.42)

(3.1.43)
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It can be shown that equation (3.1,40) is valid for any C if oI is
replaced by A-DC.

The error vector associated with a sensor failure can only be
constrained to a plane determined by CDemi and em, and it can be shown
that this plane is characteristic of a failure in the iCh sensor for C
of any rank. The sensor failures are detectable even when two or more
error planes intersect except when one of the two following cases
occurs: 1) the error planes are coincident; or 2) the error signal

maintains a fixed direction coincident with the intersection of the

two planes.
3.2 Fundamental Background for Rank C Less Than N

This section is intended to present the basic concepts of the work
done by Beard (1) and Jones (2) on failure detection filters. The
proofs and underlying theory will not be presented and can be found in
(1,2). The goal of this section is to develop the background material
needed for designing FDF for either actuator or sensor failures where
the rank of C is less than n. The actual design algorithms for
actuator and sensor failures are presented in sections 3.3 and 3.4.

The background material starts with the definition of the error
vector e(k+l) and f the failure vector associated with a particular

failure:

e(k+l) = Ge(k) + fn(k) (3.2.1)
where

G=A-DC (3.1.2)
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is the filter dynamics matrix and n(k) is defined in equation (3.1.7)

or (3.1.29) and f 1is given by one of the two following cases:

1) £ = bi

for effector failures (3.2.2)
2) £ = Demi

for sensor failures (3.2.3)

An event associated with the vector f in equation (3.2.1) is
defined to be detectable if there exists a matrix D, the filter gain,
such that

1) Ce(k) maintains a fixed direction (actuator failure) or

plane (sensor failure) in the output space.

2) All eigenvalues of (A-DC) can be specified almost arbitrarily.
Condition 1) should be self-explanatory and condition 2) is necessary
in order to insure a stable filter and to give the designer freedom to
change eigenvalues of the filter in order to improve the filter's per-
formance in a noisy environment.

fhe detection space of f is defined as the controllable subspace
of G with respect to f. The dimension of the controllable subspace of

f with respect to G is v.

The n-vector g is defined to be the kth order detection generator

for £ if the following conditions are met:
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1) c
CA
. g=0 (3.2.4)
2) aa¥tg4so (3.2.5)
- k-2 k-1
3) £ @8+ .oty AT g+ AT g (3.2.6)

if ¢f # 0 and where Gys Qoy eeey Oy g

are scalars

If g is a kth order detection generator and k eigenvalues of A-DC

are associated with the controllable space of f, then any solution of

Ag + ... +P Ak-lg + Akg (3.2.7)

DCf = Plg + P K

2

will be a detector gain for f. The eigenvalues associated with the

controllable space of A~DC are given by

k k-1
z + sz + ...+ Pzz + Pl 0 (3.2.8)

where Pi are scalars and z is the z-transform variable.

The general solution to equation (3.2.7) is
p = aplecs) Tee)™r ee)T + {1 - cfree)T cf1  en) T (3.2.9)

where

QD = Plg + P2Ag + ...+ Pk k-lg + Akg (3.2.10)

and D' is the freedom left in D after D has been constrained to be a

detector gain for £. It can be shown that the number of eigenvalues
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of A-DC which can be changed arbitrarily with D' is n-v and the number

of eigenvalues specified by QD is k, Therefore, v-k eigenvalues are

not under the control of the designer. This result will become impor-

tant later.

The following definitions are made, in part, so that it can be

determined how many eigenvalues of A-DC are free after constraining D
to be a detector gain for f£.
A" = A - qo[(cE)Tee) Leee)T (3.2.11)
¢t = [1 - celcce)Teel eny Tic (3.2.12)
K= A - af[(ce)Tee) L enyTe (3.2.13)
v—-C' -—
] 1
Mr = | CA (3.2.14)
&,A,n-l
or
o W
]
M= | OK (3.2.15)
ek |
q' = rank [M'] (3.2.16)
v=n-q' (3.2.17)

where v is the detection order of f.
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It has been shown that
A' - D'c' = A -DC (3.2.18)

where D' is the arbitrary matrix of equation (3.2.9), The unobservable
space of (A', C') is associated with the eigenvalues which were con-
strained by making D a detector gain for f£. Therefore it follows that
the detection space of f is the null space of M', The dimension of

the detection space of £, v, is defined to be the detection order of f£.

It was noted earlier that if the detection order of £, v, 1is not
equal to the order of the detection generator, k, then some of the
eigenvalues of A-DC will not be under the control of the designer,
Therefore a generator of order v, called a maximal detection generator
or just a maximal generator, must be found in order to have full
control over the eigenvalues. It has been shown that if (A, C) is an
observable pair, then a maximal generator exists and is unique.
Appendix A describes the procedure for finding the maximal generator.
If (A, C) 1s not an observable pair and the error residue does not lie
in the unobservable space, then a detection filter gain D for f may be
found but n-q'-k eigenvalues of the filter will be uncontrollable.

The theory developed so far applies to detection of a single
failure £. The background material covered in the rest of this section
is for multiple failure detection with a single filter.

The vectors {fl, fZ’ cens fr} are defined to be output separable

if

Rank[CF] = r (3.2.19)
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where F is the nxr matrix
u1 ur
F = [A fl’ ceey A fr] (3.2.20)

with ug for each fi defined by

calt, =0 §=1, ..., u-l (3.2.21)
Y1
CA £, # 0 (3.2.22)
If two vectors are not output separable, then one of two cases must
hold:
1) The two vectors have the same detection space and a detector
gain for one is a detector gain for both.
2) The two vectors do not have the same detection space and can
not be detected by the same filter.
The requirements for detection of more than one failure with a
single filter are the same as for a single failure detection filter.
The vectors {fl, cees fr} are defined to be mutually detectable if
there exists a D which satisfies the following conditions.
1) Ce(t) maintains a fixed direction in the output space
(actuator failure) or stays in a fixed plane (sensor failure).
2) All eigenvalues of A-DC can be specified almost arbitrarily.
The detector gain D that will constrain the error residue to a

direction or plane can be found by solving the following equation

p = qd(cF) Ter) L em T + p' {1 - crr(er) Ter) "t em Ty (3.2.23)
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where the eigenvalues of A-DC associated with constraining D to be a

detector gain for F are fixed by the following equation
QD = [wdl, veey Wdr] (3.2.24)

where

ki-l ki
wdi = Pilgi + ...+ PikiA 84 + A g4 (3.2.25)

and 8y is the maximal generator. The scalars [Pil’ coey Piki] are

defined by

i i
zZ -+ P z + ... + Pilz + P12 =0 (3.2.26)

where z 1s the z-transform variable. As in the single failure
detection case D' is the freedom left in D after D has been con-
strained to be a detector gain for F.

Definitions similar to equations (3.2.11-16) are needed to deter-
mine how much freedom will be left in the eigenvalues of A-DC after

constraining D to be a detector gain for F.
¢ = 1 - crl(cH) er1Hem T ¢ (3.2.27)

K= A - aF[(cF) Tcr] e Te (3.2.28)

MG' = . (3.2.29)

qg' = rank [MG'] (3.2.30)
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The group detection order, gdo, of {fl, cens fr} is
gdo = n - qg' (3.2.31)

In the equation (3.2.23) it can be shown that the number of
T
eigenvalues which are fixed when QD is found is Z v
i=1
the single filter case, qg' is the number of eigenvalues which can be

i Similar to

specified by arbitrary choice of D'. Therefore, n - E 7 qg' 1is
the number of eigenvalues not under the control of thz=§esigner.
These eigenvalues can be found. The algorithm for determining them
may be found in (1). The designer will have control over all the

eigenvalues if and only if the group detection order, gdo, is equal

T
to the sum of the individual detection orders, vy
i=1
3.3 Failure Detection Filter Design for Actuator Failures

This section is a step by step guide to designing FDF of the
form of equation (3.1.1) for multiple actuator fallures and is
derived from (1). The design of single failure filters is similar
except that steps 2, 3, 5 and 7 are not needed.
th

The failure of the ith actuator 1s associated with bi’ the i

column of B, where
B=[b, ..., bl (3.3.1)

The following steps are a guide to designing the one or more FDF's

needed to detect an actuator fallure.
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2)

3)

4)

5)

6)

7)
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If any
Cb, = 0 (3.3.2)
replace bi by Aubi where u is defined by
calb, =0 §=0, ..., ul (3.3.3)
ca’b, # 0 (3.3.4)
Form F
F = [Au]'bl, Auzbz, ey Aurbr] (3.3.5)

Find the rank of CF and 1f it is less than r divide the set
into two or more subsets until the rank of each set is the
same as the number of vectors in it. If the rank of CF
equals r, then £ is output separable.

Determine the maximal generator and the éetection order,
Vis for each fi in F. If two or more fi have the same
detection spaces, only one of them needs to be considered
in the following steps. Any detection filter for one such
vector will be a detection filter for all.

Determine C', K, MG' and qg' for F using equations (3.2.27-
3.2.30).

Determine C', K and M' for each fi using equations (3.2.12-
3.2.14).

r
If the group detection order n-qg' is not equal to Z V.,
i=1
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i) Divide the set into two or more sets and find C', K,
MG' and qg' for the new set F,
ii) See 1if the group detection order equals E vy
iii) Repeat the process 1if the group detectioi irder of
the new set F is not equal to izlvi.
8) A detector gain for each set of vectors from step 7 may be
found by solving equation (3.2.23).
9) From
G=A-DC (3.2.2)
10) Let

BF = B (3.3.6)

The line characteristic of a failure in the ith actuator is given by
Cbi'
If there are other detection filters, they will produce error
signals if a failure in the ith actuator occurs, but they will not
lie in a fixed direction, or they will not lie in a direction for
which the filter was designed.
This example E4 will demonstrate the design of a FDF for multiple
actuator failures. The system will be the boiler system in example El.

The eigenvalues of all the filters will be placed at +*.5. The system

model is described by the matrices (2.4.6-8).

T o1 0 0 0]
0 .77125 ~-.1796 0
A= (2.4.6)
0 0 .61759 0
| .1352  .832419 -.09633 1 |
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™ 15.84 1.3
285.935 -7.65
B=
0 525,812
| 140,98 6.998
1 1 0
c=|3 1 o0
2 1 1

The filter design is below.

1) Check all Cbi and

5.812  -21032.44

Cby #0
so go to next step.
2) TForm F
[ 15.84 1.3
F =
0 52
| 140.98 6.998

-1.3 ]
2679.275
(2.4.7)
-21032.44
893.619 |
1
1 (2.4.8)
1
(3.3.7)
-1.3 ]
2679.275
(3.3.8)

813.619 |

3) The rank of CF is 3 therefore F is output separable.

4) Determine the maximal generators for fl, f2 and f3 and they are

[ 15.84

0

| 140.98

285.935

(3.3.9)
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— —

1.3

-7.65
g, = f_= (3.3.10)
2 2 525.812

6.998 |

= “

-1.3

2679.275
gy = £y = (3.3.11)
-21032.44

893.619 |

The detection order, Vi’ of all three vectors 1is one.
Steps 5) and 6) are simple equation evaluations and will not be shown

here; however, the main result of steps 5) and 6) is
qg' = 0 (3.3.12)

7) The group detection order is four and the sum of the individual
detection orders is three. Therefore, one eigenvalue will
not be under the control of the designer if the FDF is

designed with F. So the set is subdivided into two sets

F, = {f

1 £} (3.3.13)

1’ 72
F2 = {f3} (3.3.14)

The group detection order of Fl is two and the sum of the
individual detection orders is two. Therefore, all the
eigenvalues of A-DC are under the control of the designer.

For the rest of the design, only F1 will be considered.



8)

9)

35

Find the detector gain for Fl realizing that two eigenvalues

must be constrained to make D a detector gain for Fl and two

eigenvalues will be arbitrary.

The values of P

11

and P in w,, and w , are -.5, where wdi

12 dl d

is given by equation (3.2.25).

The solution is

7.92
77.5612
0

| 310.65

-.42 0

[ -.21591
.16941

-.05694

| .37525

Form G

[ 56143
-.348617

.00334

-1.2433

.65 [ .001088 .001162 -.00007164
-92.36 [-.000921 -.000979 .0019019 } ¥
61.83
-40.61 _
0 [[ .53316 -.4989 .00138
0 || -.4989 .46683  -.00129 (3.3.15)
0 .00138  -.00129 0
0_
.2181  8.8367x107>
.1805 -.18121
(3.3.16)
~-.06053 .11759
.040075  -.099485
-.00279  ~-.00009 -.00229 "
.60251 .001616  -.16874
(3.3.17)
-.00012 .49999 -.000124
.1559 .0031556 .32349
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The eigenvalues of G are .4937, .4937, .5 and .5.
10) Let

BF = B (3.3.6)
11) The line characteristic of a failure in actuator 1 is given

by the vector

[~ 442.775
Cb, = | 474.435 (3.3.18)

| 458.595

1

0

Cbl 1.07 (3.3.19)
1.04

S—

The characteristic vector for f2 is found similarly.

The FDF that will detect a failure in actuator one or two is

given by

Zl(k+l) = GZl(k) + Dy(k) + BuD(k) (3.3.20)

where G is given by equation (3.3.17), D is given by equation (3.3.16)

and B 1is given by equation (2.4.7).

A failure in actuator one will cause, in the noiseless case,

y(k) - € 2, (k) = & (k) (3.3.21)

.after all transients have settled out to lie on a line given by

(3.3.19). Similar results can be derived for a failure in actuator

two.
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3.4 Failure Detection Filter Design for Sensor Fallures

This section is a step by step guide for designing FDF. The

design algorithm is for a single sensor failure and is derived from

(1). The design of a filter for detecting multiple sensor failures

will not be covered in this thesis because of the complexity of the

algorithm, The detection of more than one sensor failure with one

filter is developed in (1).

A FDF for a sensor failure is designed by the following steps.

1)

2)

3)

4)

5)

Find f such that
Cf = em, (3.4.1)

where em, is defined by equation (3.1.30).

Find g the maximal generator for f using the algorithm in
Appendix A.

Find A', C' and K using equations (3.2.11-13).

Find
f' = Af (3.4.2)

One of the foliowing must hold
i) Af lies in the observable space of C' with respect to A'.
ii) Af lies in the unobservable space of C' with respect to

A' and any detection gain satisfying
DCEf = QD (3.4.3)

is also a detector gain for Af.
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6) 1If case ii holds, solve for D using equation (3.2.9).

7) If case i holds, find g', A" by repeating steps two and
three replacing f with Af, C with C', and A with A'.

8) Solve for QD'. Where QD' is formed by equation (3.2.10)
with A replaced by A' and g replaced by g'.

9) Solve for D' using the equation

D' = QD'[(C'Af)TC'Af]-l C'Af +
D'{I-C'Af[(C'Af)T C'Af]™T c'af) (3.4.4)

where D" is an arbitrary matrix.

10) Solve for A'-D'C' noting that

A-DC = A'-D'C' (3.4.5)
and
G = A'-D'C' (3.4.6)
11) Solve for D
D = (a-G) (ccH LT (3.4.7)
12) Let
BF = B (3.4.8)

The plane characteristic of the failure of the ith sensor is given

by the vectors em, and C'Af.

i
This example, E5, will demonstrate the design of a FDF for a single

sensor failure. The system will be the boiler system of example El.
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The eigenvalues of the filter will be placed at *.5. The system model

is described by the matrices (2.4.6-8).

1 0 0 0]
0 77125 -.1796 O
A= (2.4.6)
0 0 .61759 0
| .1352  .832419 -.09633 1 |
[ 15.84 1.3 -1.3 ]
285.935  =7.65 2679.275
B = (2.4.7)
0 525.812  -21032.44
| 140.98 6.998 813.419 |

c=413 1 0 1 (2.4.8)

The filter design is as follows:

1) Solve for £ in (3.4.1)

Cf = em, (3.4.1)
1 1 0 1 1
3 1 0 1| £=1]0 (3.4.9)
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f= (3.4.10)

2) The maximal generator, g, for f is

r— -

-.5

1.5
g = (3.4.11)

The detection order of f is one.

3) Find A' and C'. K will not be found since it is unnecessary

for this part.

™ 1.25 .25 0 .25 7]
-.496675 .274575 =.1796 -.496675
A' = (3.4.12)
.058795 .058795 .61759 .058795
| -1.09399  -.39667  -.09633 -.22919 |
where Pl from equation (3.2.10) is -.5 and
0 0 0 O
c'={3 1 0 1 (3.4.13)

4) TFind Af which is f'
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[ -.5 ]
1.24668
Af = (3.4.14)
-.308795
[ 1.22919 |
5) Since
C'Af # 0 (3.4.15)

then Af lies in the observable space of A' with respect
to C'.
6) Since case i holds, step 6 is skipped.

7) Find g'

[ -.08647

.006089
g' = (3.4.16)
.104733

| 1.2292

8) Find QD'

[ .243968 |

-.587745
Q' = 686 (3.4.17)
.07968

| -.814229 |

9) Solve for D' using (3.4.4).



D'

[ 243968 ([0

-.587745
.079686

| -.814229 |

0 1.65 0]
0 3.3 0
0 o0 0

0 0 0_
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421659 .50427 | +
1 0 0

0 .58852 -.4921
0 -.4921 41148

(3.4.18)

It should be noted that it takes two eigenvalues of (A-DC) to

constrain the residue to a plane and therefore two are left

arbitrary and were specified by D".

10)

AI_DICI =

11)

Find A'-D'C'

[~ -.5939
-1.7389

-.1228

.7572

Solve for D

-.25
.49709

-.0589

[ 1.229

-.1350

.3571 °

1.0739
1.694
.0337

-.3433

.6889
1.7407
.5773

.3143

—

-.6889
-1.9203

.04029

~.41063 _

-.1350
~-.2706
-.0151

.5247 |

(3.4.19)

(3.4.20)
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12) Let

BF = B (3.4.21)

The plane characteristic of a failure in sensor one is given by the

vectors em, and C'Af

em, = | O (3.4.22)

C'Af = .9757 (3.4.23)

1.167075
The FDF that will detect a failure in sensor one is given by
Zz(k+l) = GZZ(k) + Dy (k) + Bu(k) (3.4.24)

where G and D are given by (3.4.19) and (3.4.20).

A failure in sensor omne will cause, in the noiseless case,
y(k) = CZ,(k) = g,(k) (3.4.25)

after transients have settled out to lie in a plane given by the

vectors (3.4.22) and (3.4.23). Failure detection filters to detect a

failure in sensors two and three are found similarly.
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3.5 Configuration Estimation Technique

The first part of the chapter is concerned with developing a FDF
that will constrain the filter residue to a predictable line or plane
if there is a failure which the filter is designed to detect. In this
section a decision technique is developed which gives the probability
that a noisy plant output is associated with a particular line or
plane.

Moose and Wang (13) demonstrated a decision technique that detects
random configuration changes in the presence of noise. The decision

algorithm is given below.

pl(rl(k+l))_... 0 611 ces elm
N(k+l) = E . 3 : I¢k) (3.5.1)
0 .o pm(rm(k+l)) eml . emm

where eji is a semi-Markov transition probability and where
py(ry (k+1)) = p (y(k+1)) [S(k+l) = 5, (k),¥(k)) (3.5.2)

where pi(y(k+l))]S(k+l) = Si(k),§(k)) is approximated to be a Gaussian
density function and where Si(k) is the ith configuration at time t=k.

Since pi(ri(k+l)) is a Gaussian density it is given by

1

p,(r, (k+l)) = D, exp{-1/2 riT(k+1)vi" r, (kH)) (3.5.3)

where Vi is the covariance of a filter perfectly matched to the plant

and where the constant Di is defined by
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\Y

/2 . (3.5.4)

-1/2
D, = (2M) |

It is assumed for this development that equation (3.5.2) can be
approximated as a Gaussian density as it was in (13). Using this
assumption, the only unknown parameters of (3.5.1) and (3.5.3) are
eji, the semi-Markov transition probabilities, ri(k+l), the plant
output minus the Kalman filter output in (13), and Vi’ the covariance
of the residue ri(k+l) when the filter is perfectly matched to the
plant configuration.

The semi-~-Markov transition probability eji

that the plant will change from configuration §

is the probability

i

An excellent discussion of how to choose the semi-Markov parameters

to configuration Sj'

is in (14).

The residue ri(k+l), as stated above, is in (13) the plant output
minus the Kalman filter output. In three dimensional output space,
the residue ri(k+l) is the minimum distance between two points in
output space. Therefore, the algorithm is actually dependent on the
minimum distance between two points in the output space.

Since the algorithm developed in (13) is minimum distance
dependent, it follows that the algorithm can be extended to be the
ninimum distance between the filter residue point and a line or a
plane, and the algorithm can be used to compute the probability that
a filter residue is associated with a line for actuator failures or
a plane for sensor failures. The modified algorithm is called the

line or plane detection algorithm or LOPDA.
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The value ri(k+l) must be the minimum distance between the plant
output and the predicted line or plane. The minimum distance is

computed by least squares using the formula

sTs x = sTp (3.5.5)

where

S is the set of vectors [Sli’ SZi] needed to describe the plane
associated with the ith sensor failure or the vector [Sil]
needed to describe the line associated with the ith
actuator failure.

b is the residue ei(k+l)

% is the solution to (3.5.5)

The minimum distance is calculated

ri(k+l) = Xl*Sli + x2*52i - ei(k+l) (3.5.6)

where ei(k+l) is defined
e, (k1) = y(k+l) - CZ, (k+l) ' (3.5.7)

The final unknown in equation (3.5.1) and (3.5.3) is the
covariance Vi. The mean is also calculated to show that the predicted
line or plane is the mean of a FDF residue where the plant is in a

failure state the FDF is designed to detect. The plant is described

by equations (2.2.1-2) and the ith FDF is given by

z, (k+1) = Gz, (k) + Dy(k) + Bu(k) (3.5.8)
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where

G = A-DC (3.1;2)

The following definitions are made to simplify the mean and

variance calculations.

xd (k) = Ax(k) + Bu(k) (3.
yd(k) = Cxd(k) 3.
zd(k+1l) = (A-DC)zd(k) + Dyd(k) + Bu(k) (3:
d(k+l) = yd(k+l) = Czd(k+l) 3.

The vector G is defined as any vector which lies in the predicted

direction or plane for an actuator or sensor failure respectively.

The expected value of e(k+l) is

E{e(k+l)}

E{c[Aax(k) + Bu(k) + Gu(k)] + Hw(k) -

c[A-DC)z(k) + Dy(k) + Bu(k)]} .

E{yd(k+1l) - c[A-DC)z(k) + Dyd(k) + Bu(k)] +

CGv(k) + Hw(k) - CD[CGv(k-1) + Hw(k-1)]} (3.

E{ed(k+1)} + E{CGv(k) + Hw(k) -

CD{Gv(k-1) + Hw(k-1)1} (3.

E{y(k+l) - Cz(k+l)} (3.

E{ed(k+1)} + 0O (3.

.9)

.10)

.11)

.12)

.13)

.14)

.15)

.16)

.17)
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The term ed(k+l) 1s the FDF residue with no noise. Therefore, it can

be concluded that
E{e(k+1)} =T (3.5.18)
The steady state variance of e(k+l) is
E{e(k+l) e’ (k+1)} = E{[y(k+1) - Cz(k+1)][y(k+l) - Cz(k+1)]T} (3.5.19)

= E{(C[Ax(k) + Bu(k) + Gv(k)] +
Hw(k) - C[(A-DC)z(k) +
D[yd(k) + CGv(k-1) + Hw(k-1)] + Bu(k)])
(C[Ax(k) + Bu(k) + Gv(k)] +
Hw(k) - C[(A-DC)Z(k) +

Dlyd(k) + CGv(k-1) + Hw(k-1) + Bu(k)])T} (3.5.20)

= E{([yd(k+l) - Czd(k+l)] + CGv(k) + Hw(k) -
CD[cGv(k-1) + Hw(k)]) ([yd(k+l) - Czd(k+l)] +

CGv(k) + Hw(k) - CD[COv(k-1) + Hw(k)])T} (3.5.21)

= Ef{ed(k+l)ed  (k+1)} + E{CGv(k)v: (k)GTCT +

Hw(k)wr (k)HY - CD(CGv(k-1)vr(k-1)GrcT +

Bw (k=-1)w- (k-1)HT) } (3.5.22)

At steady state if n(k) in equation (3.2.1) is constant or slowly

time-varying, then the variance will be approximately

T T

Ele(k+l)eT(k+1)] = coec” + mRuT ~ cD(cGQGTCT

+ ura)pTet  (3.5.23)

where Q and R are the covariance of v(k) and w(k) respectively.
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The failure detection part of the algorithm is complete and a
failure can be detected using an equation of the form (3.5.1);
however, the no failure case has not been discussed, For failure
detection filters the no failure state is characterized by a zero
residue because all FDF's track the plant state. Therefore, to
detect the no failure state in the presence of noise, the distance
from the residue point to zero ri(k+1) is ei(k+l). It can easily be

shown that if
ai(k+l) = 0 (3.5.24)

the least squares algorithm in equation (3.5.5) will give

x=0 (3.4.25)

Therefore, ri(k+l) will be the same for all values of 1. To prevent
this a failure threshold i1s set and the magnitude of x is not allowed
to be less than the threshold. It can be shown that a FDF will always
have a residue when a failure occurs even though it may not be in a
fixed direction or plane. The probability of the no failed state is

computed by letting any residue
rl(k+1) = ei(k+l) (3.5.25)

and where rl(k+1) is placed in equation (3.5.1) and Hl(k+l) is the
probability of the no failed state.
To summarize the results of this section, the steps to determine

if a failure has occurred in actuator one or two are given where Fi
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is the direction of the line characteristic of a failure in the ith

actuator.

1) Find the semi-Markov transition matrix, set the threshold and

find Vi the covariance for the ith residue and D,.
The following steps must be completed each iteration.
2) Find the plant output y(k+l).
3) Find the FDF outputs zi(k+l).

4) Find the FDF residue ei(k+l).

5) Calculate ri(k+l), the mimimum distance between the plant

output and Pi or, for the no failure case, Pi(k+1) is ei(k+1).

6) Calculate pi(ri(k+l)).

7) Calculate N(k+l) the probability of a failure in actuator 1

or a no failure state.



4. SIMULATION AND RESULTS

The purpose of this chapter is to exercise the theory developed in
the previous two chapters and show their merit. This will be done by
computer simulation. First, the B737 aircraft is simulated using the
model developed by Zwicke, et al., to show that the estimator part
of the control algorithm can adapt to a sensor failure, and the results
are discussed in Section 4.1. Then the boiler system developed in
example El is simulated with actuator and sensor failures using the
two detection techniques developed, the Kalman filter technique
developed in Chapter 2 and the FDF technique developed in Chapter 3.

The boiler system simulations were designed to find what types
of failures the fallure detection techniques can detect and how they
respond to modeling errors and sensor noise. The following types of
actuator and/or sensor failures were considered.

1) Biases on the actuator or sensor.

2) Zero failures, i.e. no input from an actuator or no output

from a sensor.

3) Soft failures, i.e. increased noise on sensors.

The results of these simulations are discussed in Sections 4.2 and 4.3.

4.1 B737 Simulation and Results

The B737 model with the linearized measurement model was simulated
in the presence of sensor noise. The sensor noise covariance is gotten
from (14). The only types of failures simulated are zero failures of

a sensor.

31
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The aircraft is started below the glideslope and below the target
speed. The failure of sensor one occurs at T=6 seconds. Figure 1l
shows that the estimator did determine with a high degree of certainty
that a failure did occur. Figure 2 shows that the plane does stay on
the glideslope even after the sensor failure and the aircraft per-
formance is very good.

As a result of the simulations, it has been shown that the control
algorithm adapts quickly to a sensor failure as long as (A,C) remains
an observable pair. The simulations also show that the estimator
part of the controller has good noise rejection; but as expected,
performance is degraded as sensor noise increases. A major point
that should not be overlooked is the fact that all possible failures

must be modeled.
4.2 Kalman Filter Technique Simulation and Results

The boiler system developed in example E1l was simulated for both
actuator and sensor failures using the Kalman filter technique devel-
oped in Chapter 2,

The different types of actuator failures simulated include large
and small bias and a zero failure under a variety of sensor noise
levels. The failures were simulated for two types of desired inputs.
They were a step input and a ramp input. This was done to see if the
type of input affected the failure detection. For all these conditions
the Kalman filter technique quickly and accurately identified the

failure even in the presence of sensor noise, Figﬁre 3 is typical
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showing a correct identification of the no failed state and the failed
actuator (actuator 2),

Actuator failures were also simulated in the presence of modeling
error. This was done by changing one or all of the eigenvalues of the
plant by a known value from the model the Kalman filter was using. In
this, too, the Kalman filter approach did extremely well. Figure 4 is
typical showing the identification of a failure in actuator one when
there is a 5% change of all the eigenvalues. This method showed good
tolerance for modeling error but the performance of the decision
algorithm was degraded as the number of changed eigenvalues increased
and as the percent error increased.

The different types of sensor failures simulated were large and
small biases on a sensor and a zero output, all of these under a
variety of sensor noise levels. The failures were simulated for two
types of inputs, a step and a ramp. The failure detection was not
affected by a change in inputs. For all the different types of
failures, the failure detection technique worked extremely well even
in the presence of sensor noise; however, this technique will not
detect soft failures in sensors. For all other cases, the no failed
state was quickly identified and the failure state was identified soon
after the failure occurred even in the presence of sensor noise.
Figure 5 is typical showing the identification of the no failed state
and the identification of the sensor failure after a short false
identification.

Sensor failures were also simulated in the presence of modeling

error just as the actuator failures were. In this case too, the
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failure detection technique quickly identified the failure even when
there was a 10% modeling error in all the eigenvalues., Figure 6 is
typical showing the identification of a failure in sensor one when

all the eigenvalues of the Kalman filter are incorrectly modeled by
10Z. Again as the number of eigenvalues incorrectly modeled increased
and the percentage error increased, the performance was degraded but
the degradation was not noticed until all the eigenvalues were changed
more than 10%.

In summary, the Kalman filter detection technique developed in
Chapter 2 works extremely well for a wide range of actuator and sensor
failures except soft failures. Also, changing the system input seemed
to have no effect on failure detection. This method also worked well
in the presence of sensor noise and when there was significant modeling
error. The major disadvantage of this method of failure detection is
that every failure must be modeled and all the models must be run in

parallel which can become overwhelming computationally.

4.3 Failure Detection Filter Technique Simulation and Results

The boiler system in Chapter 2 was also simulated for both actuator
and sensor faillures using the FDF technique developed in Chapter 3.

The different types of actuator failures simulated included large
and small biases and zero fallure of an actuator, all of these both with
and without sensor noise, The failures were also simulated with the
desired inputs being either a step or ramp. The no fallure state and
failures were identified regardless of the input, as long as the residue

was large enough to exceed the threshold, for large and small biases
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and zero inputs when there was no sensor noise. Figure 7 is typical
showing the no failure state correctly identified and a failure in
actuator one being correctly identified when a small bias is applied
to the actuator, However, when sensor noise is added, the performance
was poor for all cases except for very low noise levels. This was not
totally unexpected because the FDF was not optimized for performance
in noisy environments; however, the no failure configuration is
extremely unreliable. This is primaéily due to the difficulty of
determining the threshold which distinguishes the no failure state
from the failure state. The threshold must be changed whenever the
magnitude of the failure becomes small or the sensor noise level
changes which makes this technique for identifying the no failure
configuration very difficult to implement. Figure 8 shows a correct
identification of the no failure configuration and a small bias failure
for actuator two; however, the SNR was in the order of 10000:1. With
noise levels greater than this, the technique could not distinguish
the no failure case with any reliability.

The actuator failure was also simulated in the presence of
modeling error. Unlike the Kalman filter technique, the FDF technique
is very sensitive to modeling error. The largest modeling error that
the FDF technique could consistently tolerate and still identify the
no failure and failure configurations was about 57 in one eigenvalue.
Figure 9 shows the identification of the no failure configuration and
the failure of actuator one in the presence of a 57 modeling error of

one eigenvalue,
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The different types of sensor failures simulated were large and
small biases of a sensor, a zero failure and increased noise on a
sensor. Each of these failures were simulated with various amounts
of sensor noise and both step and ramp inputs. The failure detection
technique was not affected by the type of failure as long as it created
a residue large enough to exceed the failure threshold. The failure
detection technique was also impervious to changes in the input;
however, low level sensor noise did cause the performance to degrade
significantly. The no failure detection technique was very sensitive
to low levels of noise which made it useless. The failure detection
technique was also sensitive to sensor noise but to a much lesser
degree, Figure 10 shows the detection of the no failure state and a
failure of sensor 3 when there is no sensor noise, Figure 11 demon-
strates that the no failure state is unreliable when sensor noise is
present, The no failure configuration is identified as a failure in
sensor 3. The failure configuration in Figure 11 is quickly and
correctly identified. The FDF technique will detect a soft failure in
a sensor as shown in Figure 12. Again note that the no failure con-
figuration identification does not give any reliable information.

Sensor failures were also simulated in the presence of modeling
error. The results were disappointing because the FDF technique shows
no tolerance for any modeling error. Figure 13 shows a failure in
sensor one at t=760 seconds which is incorrectly identified as a -
failure in sensor three when there is a 17 modeling error in one

eigenvalue. This result should not be surprising because the FDF
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developed by Beard can also be designed to detect changes in the A
matrix. A change in the plant will cause a random error in all the
filter residues in addition to any error associated with a failure
and therefore may cause an incorrect identification.

In summary, the failure detection filter technique can detect a
large number of failures with various inputs in the presence of noise.
This technique can also detect soft failures in sensors. These bene-
fits are overshadowed by the disadvantages. The no failure detection
technique is very sensitive to sensor noise and small levels of sensor
noise make it unreliable. Also, the FDF technique is also very sensi-

tive to small changes in the eigenvalues.



5. CONCLUSIONS

This report is intended to show that the estimator part of the
control algorithm developed by Zwicke, et al. for the B737 can adapt
to sensor failures. In addition it is intended to explore potential
usefulness of the Kalman filter identification technique adapted from
the estimator of the B737 control algorithm and the FDF technique
developed in this thesis for failure detection in the B737 project.

The B737 control algorithm is shown to work well during a sensor
failure in the presence of sensor noise; however, the main disadvantage
i1s that all failure modes must be modeled which can make this technique
hard to implement.

The Kalman filter technique presented in Chapter 2 has some
major advantages over the FDF technique present in Chapter 3. First
the Kalman filter technique works extremely well in the presence of
sensor noise. Also, small modeling errors do not affect the perform-
ance of the technique. This is a major concern for this particular
application since the plant models are linearized and will seldom be
a perfect match to the actual plant. This failure detection technique
does require a model for each failure mode which can make detection
unwieldy.

The FDF technique presented in Chapter 3 also has advantages but
they are outweighted by the technique's limitations. The FDF technique
can detect a wide range of failures including soft failures with a
small number of filters. This technique can also distinguish between

a zero input and the zero failure of an actuator. Failures are
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detected with reliability quicker than they are using the Kalman
filter technique; however, the no failure configuration detection
technique developed in Chapter 3 is not satisfactory because the
failure threshold is difficult to set when sensor noise is present.
The most serious problem with this failure detection technique is
that the plant models must be too accurate to allow for the estimated
parameters and the changes in the plant as the plane goes through

its flight envelope.

In summary, the failure detection filter technique as it is
presented in this thesis can not provide reliable failure detection
for the B737 primarily because of its need for an extremely accurate
plant model. The Kalman filter technique although cumbersome to

implement can accurately detect actuator or sensor failures for this

type of system.



6. RECOMMENDATIONS FOR FURTHER STUDY

It is hoped that this{report will not be the end of research in
this area, but will be a continuing part of the research effort in the
flight control and failure detection areas. The following areas are
recommended for further study.

First, the B737 model developed by Zwicke, et al. was not designed
considering the possibility of actuator and sensor failures. Therefore,
the model needs to be modified so that all the information necessary
for control of the aircraft is still available after any sensor failure.

In addition to the work needed on the failure model, the Kalman
filter detection technique used in the B737 project needs further study.
Since the Kalman filter approach requires a failure model for each
‘failure and there are almost an infinite number of ways actuators and
sensors can fail (bias of 10%Z, 11%, etc.), there needs to be a deter-
mination of how accurate each failure model must be and how many
similar failures can one model detect.

The failure detection filter technique developed in this thesis
also needs further study. First and foremost, a better no failure
configuration detector needs to be developed. A hybrid system using
the Kalman filter technique for the no failure state detection and the
FDF technique to detect failures appears to be a promising approach.

In addition, in the FDF technique an assumption that equation (3.5.2)
could be approximated by a Gaussian density function was made. This
should be investigated further to see if the assumption is indeed

valid and if a '"better" approximation may be found.
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Finally, this report has shown that the FDF technique works
extremely well. However, the classes of problems for which this
technique is applicable are severely restricted. Therefore, FDF
theory needs to be extended so that it can be applied to nonlinear

and time varying systems.
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APPENDIX A. FINDING THE MAXIMAL GENERATOR

The algorithm for finding the maximal generator is developed by
Beard (1) and a brief synopsis is presented in this appendix. The
algorithm depends on the orthognal reduction process and it is reviewed
before the maximal generator algorithm is given.

The orthognal reduction of an nxn positive definite matrix by

the rows of an nxn matrix V, where

V= E (A-1)

and V, are nxl arbitrary vectors, generates a matrix Qf whose range

i
space coincides with the null space of V. The nxn matrix Qf is found
by the following steps.

1) Any auxiliary vector w, is defined by

1

= Q.V (A-2)

“1 11

where ﬂl is the positive definite matrix Q.

2) Solve the following equation for 92

(A-3)

3) The following steps are iterative
i) With Qi from the previous iteration, form the

auxilary vector.
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ii) 1f wg # 0, then solve the following equation for Qi+

1
(.DLUT
1“1
ypp = 9y - T, (a-4)
i Y4
1i4) 1f wy = 0, then set
T = Y (a-5)

This orthognal reduction process is completed if all n rows of V have
been processed.

The algorithm for finding the maximal generator is given by the
followipg steps.

1) Find M', and MkT where M' is given by equation (3.2.14) and

where

r—C -

CK

Mer ™ | : (4-6)

éKn-q'—l

e -

where q' is defined by equation (3.2.16).

2) Form the starting matrix

a=1 (a-7)

3) Perform the orthognal reduction of Q by the rows of M'.
. 4) When the reduction process is complete, Qf is the range
scale of f.

The next four steps are for finding the maximal generator.



5)

6)

7)

8)
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Reduce Qf by the rows of MkT' All the auxiliary vectors of

Qf will be zero except for one.

The maximal generator is formed by the last nonzero auxiliary

vector before termination, given by the equation

. V-1,T
2, (C,K"™)

©y

where v is the detection order of £ and Cj is the jth
of C.

The magnitude of w, must be adjusted to satisfy

i

CAv-lg - ca'f

where u is defined by
cade=0 =0, ..., ul
CA'E # 0

The maximal generator g is

c, AYf
S B
g v=-1

(a-8)

row

(A-9)

(A-10)

(a-11)

(A-12)
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