251 research outputs found

    A finite element model of cerebral vascular injury for predicting microbleeds location

    Get PDF
    Finite Element (FE) models of brain mechanics have improved our understanding of the brain response to rapid mechanical loads that produce traumatic brain injuries. However, these models have rarely incorporated vasculature, which limits their ability to predict the response of vessels to head impacts. To address this shortcoming, here we used high-resolution MRI scans to map the venous system anatomy at a submillimetre resolution. We then used this map to develop an FE model of veins and incorporated it in an anatomically detailed FE model of the brain. The model prediction of brain displacement at different locations was compared to controlled experiments on post-mortem human subject heads, yielding over 3,100 displacement curve comparisons, which showed fair to excellent correlation between them. We then used the model to predict the distribution of axial strains and strain rates in the veins of a rugby player who had small blood deposits in his white matter, known as microbleeds, after sustaining a head collision. We hypothesised that the distribution of axial strain and strain rate in veins can predict the pattern of microbleeds. We reconstructed the head collision using video footage and multi-body dynamics modelling and used the predicted head accelerations to load the FE model of vascular injury. The model predicted large axial strains in veins where microbleeds were detected. A region of interest analysis using white matter tracts showed that the tract group with microbleeds had 95th percentile peak axial strain and strain rate of 0.197 and 64.9 s−1 respectively, which were significantly larger than those of the group of tracts without microbleeds (0.163 and 57.0 s−1). This study does not derive a threshold for the onset of microbleeds as it investigated a single case, but it provides evidence for a link between strain and strain rate applied to veins during head impacts and structural damage and allows for future work to generate threshold values. Moreover, our results suggest that the FE model has the potential to be used to predict intracranial vascular injuries after TBI, providing a more objective tool for TBI assessment and improving protection against it

    High contrast imaging at the LBT: the LEECH exoplanet imaging survey

    Full text link
    In Spring 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its \sim130-night campaign from the Large Binocular Telescope (LBT) atop Mt Graham, Arizona. This survey benefits from the many technological achievements of the LBT, including two 8.4-meter mirrors on a single fixed mount, dual adaptive secondary mirrors for high Strehl performance, and a cold beam combiner to dramatically reduce the telescope's overall background emissivity. LEECH neatly complements other high-contrast planet imaging efforts by observing stars at L' (3.8 μ\mum), as opposed to the shorter wavelength near-infrared bands (1-2.4 μ\mum) of other surveys. This portion of the spectrum offers deep mass sensitivity, especially around nearby adolescent (\sim0.1-1 Gyr) stars. LEECH's contrast is competitive with other extreme adaptive optics systems, while providing an alternative survey strategy. Additionally, LEECH is characterizing known exoplanetary systems with observations from 3-5μ\mum in preparation for JWST.Comment: 12 pages, 5 figures. Proceedings of the SPIE, 9148-2

    In vivo detection of cerebral tau pathology in long-term survivors of traumatic brain injury

    Get PDF
    Traumatic brain injury (TBI) can trigger progressive neurodegeneration, with tau pathology seen years after a single moderate-severe TBI. Identifying this type of posttraumatic pathology in vivo might help to understand the role of tau pathology in TBI pathophysiology. We used flortaucipir positron emission tomography (PET) to investigate whether tau pathology is present many years after a single TBI in humans. We examined PET data in relation to markers of neurodegeneration in the cerebrospinal fluid (CSF), structural magnetic resonance imaging measures, and cognitive performance. Cerebral flortaucipir binding was variable, with many participants with TBI showing increases in cortical and white matter regions. At the group level, flortaucipir binding was increased in the right occipital cortex in TBI when compared to healthy controls. Flortaucipir binding was associated with increased total tau, phosphorylated tau, and ubiquitin carboxyl-terminal hydrolase L1 CSF concentrations, as well as with reduced fractional anisotropy and white matter tissue density in TBI. Apolipoprotein E (APOE) ε4 genotype affected the relationship between flortaucipir binding and time since injury, CSF β amyloid 1–42 (Aβ42) concentration, white matter tissue density, and longitudinal Mini-Mental State Examination scores in TBI. The results demonstrate that tau PET is a promising approach to investigating progressive neurodegeneration associated with tauopathy after TBI

    Alzheimer's disease marker phospho-tau181 is not elevated in the first year after moderate-to-severe TBI

    Get PDF
    BACKGROUND: Traumatic brain injury (TBI) is associated with the tauopathies Alzheimer's disease and chronic traumatic encephalopathy. Advanced immunoassays show significant elevations in plasma total tau (t-tau) early post-TBI, but concentrations subsequently normalise rapidly. Tau phosphorylated at serine-181 (p-tau181) is a well-validated Alzheimer's disease marker that could potentially seed progressive neurodegeneration. We tested whether post-traumatic p-tau181 concentrations are elevated and relate to progressive brain atrophy. METHODS: Plasma p-tau181 and other post-traumatic biomarkers, including total-tau (t-tau), neurofilament light (NfL), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP), were assessed after moderate-to-severe TBI in the BIO-AX-TBI cohort (first sample mean 2.7 days, second sample within 10 days, then 6 weeks, 6 months and 12 months, n=42). Brain atrophy rates were assessed in aligned serial MRI (n=40). Concentrations were compared patients with and without Alzheimer's disease, with healthy controls. RESULTS: Plasma p-tau181 concentrations were significantly raised in patients with Alzheimer's disease but not after TBI, where concentrations were non-elevated, and remained stable over one year. P-tau181 after TBI was not predictive of brain atrophy rates in either grey or white matter. In contrast, substantial trauma-associated elevations in t-tau, NfL, GFAP and UCH-L1 were seen, with concentrations of NfL and t-tau predictive of brain atrophy rates. CONCLUSIONS: Plasma p-tau181 is not significantly elevated during the first year after moderate-to-severe TBI and levels do not relate to neuroimaging measures of neurodegeneration

    The LIGO HET Response (LIGHETR) Project to Discover and Spectroscopically Follow Optical Transients Associated with Neutron Star Mergers

    Full text link
    The LIGO HET Response (LIGHETR) project is an enterprise to follow up optical transients (OT) discovered as gravitational wave merger sources by the LIGO/Virgo collaboration (LVC). Early spectroscopy has the potential to constrain crucial parameters such as the aspect angle. The LIGHETR collaboration also includes the capacity to model the spectroscopic evolution of mergers to facilitate a real-time direct comparison of models with our data. The principal facility is the Hobby-Eberly Telescope. LIGHETR uses the massively-replicated VIRUS array of spectrographs to search for associated OTs and obtain early blue spectra and in a complementary role, the low-resolution LRS-2 spectrograph is used to obtain spectra of viable candidates as well as a densely-sampled series of spectra of true counterparts. Once an OT is identified, the anticipated cadence of spectra would match or considerably exceed anything achieved for GW170817 = AT2017gfo for which there were no spectra in the first 12 hours and thereafter only roughly once daily. We describe special HET-specific software written to facilitate the program and attempts to determine the flux limits to undetected sources. We also describe our campaign to follow up OT candidates during the third observational campaign of the LIGO and Virgo Scientific Collaborations. We obtained VIRUS spectroscopy of candidate galaxy hosts for 5 LVC gravitational wave events and LRS-2 spectra of one candidate for the OT associated with S190901ap. We identified that candidate, ZTF19abvionh = AT2019pip, as a possible Wolf-Rayet star in an otherwise unrecognized nearby dwarf galaxy.Comment: 26 pages, 15 figure

    Evaluation of a novel magneto-optical method for the detection of malaria parasites

    Get PDF
    Improving the efficiency of malaria diagnosis is one of the main goals of current malaria research. We have recently developed a magneto-optical (MO) method which allows high-sensitivity detection of malaria pigment (hemozoin crystals) in blood via the magnetically induced rotational motion of the hemozoin crystals. Here, we evaluate this MO technique for the detection of Plasmodium falciparum in infected erythrocytes using in-vitro parasite cultures covering the entire intraerythrocytic life cycle. Our novel method detected parasite densities as low as approximately 40 parasites per microliter of blood (0.0008% parasitemia) at the ring stage and less than 10 parasites/microL (0.0002% parasitemia) in the case of the later stages. These limits of detection, corresponding to approximately 20 pg/microL of hemozoin produced by the parasites, exceed that of rapid diagnostic tests and compete with the threshold achievable by light microscopic observation of blood smears. The MO diagnosis requires no special training of the operator or specific reagents for parasite detection, except for an inexpensive lysis solution to release intracellular hemozoin. The devices can be designed to a portable format for clinical and in-field tests. Besides testing its diagnostic performance, we also applied the MO technique to investigate the change in hemozoin concentration during parasite maturation. Our preliminary data indicate that this method may offer an efficient tool to determine the amount of hemozoin produced by the different parasite stages in synchronized cultures. Hence, it could eventually be used for testing the susceptibility of parasites to antimalarial drugs

    Mathematical Modeling of Malaria Infection with Innate and Adaptive Immunity in Individuals and Agent-Based Communities

    Get PDF
    Background: Agent-based modeling of Plasmodium falciparum infection offers an attractive alternative to the conventional Ross-Macdonald methodology, as it allows simulation of heterogeneous communities subjected to realistic transmission (inoculation patterns). Methodology/Principal Findings: We developed a new, agent based model that accounts for the essential in-host processes: parasite replication and its regulation by innate and adaptive immunity. The model also incorporates a simplified version of antigenic variation by Plasmodium falciparum. We calibrated the model using data from malaria-therapy (MT) studies, and developed a novel calibration procedure that accounts for a deterministic and a pseudo-random component in the observed parasite density patterns. Using the parasite density patterns of 122 MT patients, we generated a large number of calibrated parameters. The resulting data set served as a basis for constructing and simulating heterogeneous agent-based (AB) communities of MT-like hosts. We conducted several numerical experiments subjecting AB communities to realistic inoculation patterns reported from previous field studies, and compared the model output to the observed malaria prevalence in the field. There was overall consistency, supporting the potential of this agent-based methodology to represent transmission in realistic communities. Conclusions/Significance: Our approach represents a novel, convenient and versatile method to model Plasmodiu
    corecore