4,434 research outputs found
GraphSE: An Encrypted Graph Database for Privacy-Preserving Social Search
In this paper, we propose GraphSE, an encrypted graph database for online
social network services to address massive data breaches. GraphSE preserves
the functionality of social search, a key enabler for quality social network
services, where social search queries are conducted on a large-scale social
graph and meanwhile perform set and computational operations on user-generated
contents. To enable efficient privacy-preserving social search, GraphSE
provides an encrypted structural data model to facilitate parallel and
encrypted graph data access. It is also designed to decompose complex social
search queries into atomic operations and realise them via interchangeable
protocols in a fast and scalable manner. We build GraphSE with various
queries supported in the Facebook graph search engine and implement a
full-fledged prototype. Extensive evaluations on Azure Cloud demonstrate that
GraphSE is practical for querying a social graph with a million of users.Comment: This is the full version of our AsiaCCS paper "GraphSE: An
Encrypted Graph Database for Privacy-Preserving Social Search". It includes
the security proof of the proposed scheme. If you want to cite our work,
please cite the conference version of i
Modelling and control of a high redundancy actuator
The high redundancy actuation concept is a completely new approach to fault tolerance, and it is important to appreciate that it provides a transformation of the characteristics of actuators so that the actuation performance (capability) degrades slowly rather than suddenly failing, even though individual elements themselves fail. This paper aims to demonstrate the viability of the concept by showing that a highly redundant actuator, comprising a relatively large number of actuation elements, can be controlled in such a way that faults in individual elements are inherently accommodated, although some degradation in overall performance will inevitably be found. The paper introduces the notion of fault-tolerant systems and the highly redundant actuator concept. Then a model for a two by two configuration with electro-mechanical actuation elements is derived. Two classical control approaches are then considered based on frequency domain techniques. Finally simulation results under a number of faults show the viability of the approach for fault accommodation without re-configuratio
Issues and Observations on Applications of the Constrained-Path Monte Carlo Method to Many-Fermion Systems
We report several important observations that underscore the distinctions
between the constrained-path Monte Carlo method and the continuum and lattice
versions of the fixed-node method. The main distinctions stem from the
differences in the state space in which the random walk occurs and in the
manner in which the random walkers are constrained. One consequence is that in
the constrained-path method the so-called mixed estimator for the energy is not
an upper bound to the exact energy, as previously claimed. Several ways of
producing an energy upper bound are given, and relevant methodological aspects
are illustrated with simple examples.Comment: 28 pages, REVTEX, 5 ps figure
Feedback cooling of a nanomechanical resonator
Cooled, low-loss nanomechanical resonators offer the prospect of directly
observing the quantum dynamics of mesoscopic systems. However, the present
state of the art requires cooling down to the milliKelvin regime in order to
observe quantum effects. Here we present an active feedback strategy based on
continuous observation of the resonator position for the purpose of obtaining
these low temperatures. In addition, we apply this to an experimentally
realizable configuration, where the position monitoring is carried out by a
single-electron transistor. Our estimates indicate that with current technology
this technique is likely to bring the required low temperatures within reach.Comment: 10 pages, RevTex4, 4 color eps figure
Purple dwarfs : New L subdwarfs from UKIDSS and SDSS
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The first L subdwarf was a discovered only ten years ago. Less than ten L subdwarfs been published in the literature to date. Metal-poor ultracool atmospheres has not been well understood. Halo mass function cross substellar limit has not been measured. We used UKIDSS and SDSS to search for L subdwarfs. We have confirmed some new L subdwarfs and are following up more candidates with ground based large telescopes. We discussed spectral features of L subdwarfs and halo brown dwarfs
Two different quasiparticle scattering rates in vortex line liquid phase of layered d-wave superconductors
We carry out a quantum mechanical analysis of the behavior of nodal
quasiparticles in the vortex line liquid phase of planar d-wave
superconductors. Applying a novel path integral technique we calculate a number
of experimentally relevant observables and demonstrate that in the low-field
regime the quasiparticle scattering rates deduced from photoemission and
thermal transport data can be markedly different from that extracted from
tunneling, specific heat, superfluid stiffness or spin-lattice relaxation time.Comment: Latex, 4 pages, no figure
Albedo and laser threshold of a diffusive Raman gain medium
The diffuse reflectance (albedo) and transmittance of a Raman random gain
medium are calculated via semi-analytic two-stream equations with
power-dependent coefficients. The results show good agreement with the
experimental data for barium nitrate powder. Both the Raman albedo AR and Raman
transmittance TR diverge at a critical gain gc, interpreted as the threshold
for diffusive Raman laser generation. However, the ratio TR/AR approaches a
finite limiting value dependent on particle scattering albedo v and scattering
asymmetry g. The dependence of the generation threshold on the scattering
parameters is analysed and the feedback effect of Fresnel reflection at the
gain boundaries evaluated. The addition of external mirrors, particularly at
the pumped surface, significantly reduces the threshold gain.Comment: 15 pages, 8 figure
Sequential drain amylase to guide drain removal following pancreatectomy
BACKGROUND:
Although used as criterion for early drain removal, postoperative day (POD) 1 drain fluid amylase (DFA) ≤ 5000 U/L has low negative predictive value for clinically relevant postoperative pancreatic fistula (CR-POPF). It was hypothesized that POD3 DFA ≤ 350 could provide further information to guide early drain removal.
METHODS:
Data from a pancreas surgery consortium database for pancreatoduodenectomy and distal pancreatectomy patients were analyzed retrospectively. Those patients without drains or POD 1 and 3 DFA data were excluded. Patients with POD1 DFA ≤ 5000 were divided into groups based on POD3 DFA: Group A (≤350) and Group B (>350). Operative characteristics and 60-day outcomes were compared using chi-square test.
RESULTS:
Among 687 patients in the database, all data were available for 380. Fifty-five (14.5%) had a POD1 DFA > 5000. Among 325 with POD1 DFA ≤ 5000, 254 (78.2%) were in Group A and 71 (21.8%) in Group B. Complications (35 (49.3%) vs 87 (34.4%); p = 0.021) and CR-POPF (13 (18.3%) vs 10 (3.9%); p < 0.001) were more frequent in Group B.
CONCLUSIONS:
In patients with POD1 DFA ≤ 5000, POD3 DFA ≤ 350 may be a practical test to guide safe early drain removal. Further prospective testing may be useful
- …