29 research outputs found
Endothelial Surface Glycocalyx Can Regulate Flow-Induced Nitric Oxide Production in Microvessels In Vivo
Due to its unique location, the endothelial surface glycocalyx (ESG) at the luminal side of the microvessel wall may serve as a mechano-sensor and transducer of blood flow and thus regulate endothelial functions. To examine this role of the ESG, we used fluorescence microscopy to measure nitric oxide (NO) production in post-capillary venules and arterioles of rat mesentery under reduced (low) and normal (high) flow conditions, with and without enzyme pretreatment to remove heparan sulfate (HS) of the ESG and in the presence of an endothelial nitric oxide synthase (eNOS) inhibitor, NG-monomethyl-L-arginine (L-NMMA). Rats (SD, 250–300g) were anesthetized. The mesentery was gently taken out from the abdominal cavity and arranged on the surface of a glass coverslip for the measurement. An individual post-capillary venule or arteriole was cannulated and loaded for 45 min with 5 μM 4, 5-Diaminofluorescein diacetate, a membrane permeable fluorescent indictor for NO, then the NO production was measured for ~10 min under a low flow (~300 μm/s) and for ~60 min under a high flow (~1000 μm/s). In the 15 min after switching to the high flow, DAF-2-NO fluorescence intensity increased to 1.27-fold of its baseline, DAF-2-NO continuously increased under the high flow, to 1.53-fold of its baseline in 60 min. Inhibition of eNOS by 1 mM L-NMMA attenuated the flow-induced NO production to 1.13-fold in 15 min and 1.30-fold of its baseline in 60 min, respectively. In contrast, no significant increase in NO production was observed after switching to the high flow for 60 min when 1 h pretreatment with 50 mU/mL heparanase III to degrade the ESG was applied. Similar NO production was observed in arterioles under low and high flows and under eNOS inhibition. Our results suggest that ESG participates in endothelial cell mechanosensing and transduction through its heparan sulfate to activate eNOS
Secondary Production of Gaseous Nitrated Phenols in Polluted Urban Environments
Nitrated phenols (NPs) are important atmospheric pollutants that affect air quality, radiation, and health. The recent development of the time-of-flight chemical ionization mass spectrometer (ToF-CIMS) allows quantitative online measurements of NPs for a better understanding of their sources and environmental impacts. Herein, we deployed nitrate ions as reagent ions in the ToF-CIMS and quantified six classes of gaseous NPs in Beijing. The concentrations of NPs are in the range of 1 to 520 ng m(-3). Nitrophenol (NPh) has the greatest mean concentration. Dinitrophenol (DNP) shows the greatest haze-to-clean concentration ratio, which may be associated with aqueous production. The high concentrations and distinct diurnal profiles of NPs indicate a strong secondary formation to overweigh losses, driven by high emissions of precursors, strong oxidative capacity, and high NOx levels. The budget analysis on the basis of our measurements and box-model calculations suggest a minor role of the photolysis of NPs (Peer reviewe
Data from: Facile synthesis of porous Mo2C/C composites by using luffa sponge-derived carbon template in molten salt media
Herein, we report the synthesis of a new type of porous Mo2C/C composite by using luffa sponge-derived carbon template, and ammonium molybdate ((NH4)6Mo7O24•4H2O) in the molten NaCl-KCl salts media. The product exhibits a higher specific surface area and three-dimensional porous structure, including macrochannels, micropores, and mesopores. The desirable porous structure is resulted from the carbon template structure and formed Mo2C coating
Data from: Facile synthesis of porous Mo2C/C composites by using luffa sponge-derived carbon template in molten salt media
Herein, we report the synthesis of a new type of porous Mo2C/C composite by using luffa sponge-derived carbon template, and ammonium molybdate ((NH4)6Mo7O24•4H2O) in the molten NaCl-KCl salts media. The product exhibits a higher specific surface area and three-dimensional porous structure, including macrochannels, micropores, and mesopores. The desirable porous structure is resulted from the carbon template structure and formed Mo2C coating
Adsorption of Indium(III) Ions from an Acidic Solution by Using UiO-66
Considering environmental friendliness and economic factors, the separation and extraction of indium under acidic conditions are of great significance. In this research, metal-organic frameworks (MOFs) of UiO-66 were successfully prepared and used for the separation and adsorption of indium. The properties of UiO-66 were structurally characterized using powder X-ray diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), Brunauer-Emmett-Teller surface area analyzer (BET), thermogravimetric analysers (TGA) and Scanning Electron Microscope (SEM). The results show that UiO-66 can resist acid and keep its structure unchanged, even at a strong acidity of pH 1. The adsorption performance of UiO-66 to indium (III) was also evaluated. The results show that the adsorption process of indium ions was by the Langmuir adsorption isotherm, with a maximum adsorption capacity of 11.75 mg·g−1 being recorded. The adsorption kinetics experiment preferably fits the second-order kinetic model. A possible mechanism for the adsorption of In(III) by UiO-66 was explored through X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared analysis(FT-IR). It was concluded that the C=O of free –COOH of UiO-66 was involved in the adsorption of In(III) by cation exchange. This study indicates, for the first time, that UiO-66 can be applied as an acid-resistant adsorbent to recover indium (III)
Human Motion Capture Based on Incremental Dimension Reduction and Projection Position Optimization
Three-dimensional (3D) human motion capture is a hot researching topic at present. The network becomes advanced nowadays, the appearance of 3D human motion is indispensable in the multimedia works, such as image, video, and game. 3D human motion plays an important role in the publication and expression of all kinds of medium. How to capture the 3D human motion is the key technology of multimedia product. Therefore, a new algorithm called incremental dimension reduction and projection position optimization (IDRPPO) is proposed in this paper. This algorithm can help to learn sparse 3D human motion samples and generate the new ones. Thus, it can provide the technique for making 3D character animation. By taking advantage of the Gaussian incremental dimension reduction model (GIDRM) and projection position optimization, the proposed algorithm can learn the existing samples and establish the relevant mapping between the low dimensional (LD) data and the high dimensional (HD) data. Finally, the missing frames of input 3D human motion and the other type of 3D human motion can be generated by the IDRPPO
Construction of Eukaryotic Expression Vector with mBD1-mBD3 Fusion Genes and Exploring Its Activity against Influenza A Virus
Influenza (flu) pandemics have exhibited a great threat to human health throughout history. With the emergence of drug-resistant strains of influenza A virus (IAV), it is necessary to look for new agents for treatment and transmission prevention of the flu. Defensins are small (2–6 kDa) cationic peptides known for their broad-spectrum antimicrobial activity. Beta-defensins (β-defensins) are mainly produced by barrier epithelial cells and play an important role in attacking microbe invasion by epithelium. In this study, we focused on the anti-influenza A virus activity of mouse β-defensin 1 (mBD1) and β defensin-3 (mBD3) by synthesizing their fusion peptide with standard recombinant methods. The eukaryotic expression vectors pcDNA3.1(+)/mBD1-mBD3 were constructed successfully by overlap-PCR and transfected into Madin-Darby canine kidney (MDCK) cells. The MDCK cells transfected by pcDNA3.1(+)/mBD1-mBD3 were obtained by G418 screening, and the mBD1-mBD3 stable expression pattern was confirmed in MDCK cells by RT-PCR and immunofluorescence assay. The acquired stable transfected MDCK cells were infected with IAV (A/PR/8/34, H1N1, 0.1 MOI) subsequently and the virus titers in cell culture supernatants were analyzed by TCID50 72 h later. The TCID50 titer of the experimental group was clearly lower than that of the control group (p < 0.001). Furthermore, BALB/C mice were injected with liposome-encapsulated pcDNA3.1(+)/mBD1-mBD3 through muscle and then challenged with the A/PR/8/34 virus. Results showed the survival rate of 100% and lung index inhibitory rate of 32.6% in pcDNA3.1(+)/mBD1-mBD3group; the TCID50 titer of lung homogenates was clearly lower than that of the control group (p < 0.001). This study demonstrates that mBD1-mBD3 expressed by the recombinant plasmid pcDNA3.1(+)/mBD1-mBD3 could inhibit influenza A virus replication both in vitro and in vivo. These observations suggested that the recombinant mBD1-mBD3 might be developed into an agent for influenza prevention and treatment
Chemotherapy-induced microbiota exacerbates the toxicity of chemotherapy through the suppression of interleukin-10 from macrophages
ABSTRACTThe gut microbiota has been shown to influence the efficacy and toxicity of chemotherapy, thereby affecting treatment outcomes. Understanding the mechanism by which microbiota affects chemotherapeutic toxicity would have a profound impact on cancer management. In this study, we report that fecal microbiota transplantation from oxaliplatin-exposed mice promotes toxicity in recipient mice. Splenic RNA sequencing and macrophage depletion experiment showed that the microbiota-induced toxicity of oxaliplatin in mice was dependent on macrophages. Furthermore, oxaliplatin-mediated toxicity was exacerbated in Il10-/- mice, but not attenuated in Rag1-/- mice. Adoptive transfer of macrophage into Il10-/- mice confirmed the role of macrophage-derived IL-10 in the improvement of oxaliplatin-induced toxicity. Depletion of fecal Lactobacillus and Bifidobacterium was associated with the exacerbation of oxaliplatin-mediated toxicity, whereas supplementation with these probiotics alleviated chemotherapy-induced toxicity. Importantly, IL-10 administration and probiotics supplementation did not attenuate the antitumor efficacy of chemotherapy. Clinically, patients with colorectal cancer exposed to oxaliplatin exhibited downregulation of peripheral CD45+IL-10+ cells. Collectively, our findings indicate that microbiota-mediated IL-10 production influences tolerance to chemotherapy, and thus represents a potential clinical target
Dietary iron modulates gut microbiota and induces SLPI secretion to promote colorectal tumorigenesis
ABSTRACTDietary iron intake is closely related to the incidence of colorectal cancer. However, the interactions among dietary iron, gut microbiota, and epithelial cells in promoting tumorigenesis have rarely been discussed. Here, we report that gut microbiota plays a crucial role in promoting colorectal tumorigenesis in multiple mice models under excessive dietary iron intake. Gut microbiota modulated by excessive dietary iron are pathogenic, irritating the permeability of the gut barrier and causing leakage of lumen bacteria. Mechanistically, epithelial cells released more secretory leukocyte protease inhibitor (SLPI) to combat the leaked bacteria and limit inflammation. The upregulated SLPI acted as a pro-tumorigenic factor and promoted colorectal tumorigenesis by activating the MAPK signaling pathway. Moreover, excessive dietary iron significantly depleted Akkermansiaceae in the gut microbiota; while supplementation with Akkermansia muciniphila could successfully attenuate the tumorigenic effect from excessive dietary iron. Overall, excessive dietary iron perturbs diet – microbiome–epithelium interactions, which contributes to intestinal tumor initiation