259 research outputs found

    GCOS 2022 Implementation Plan

    Full text link

    Temporal downscaling of glaciological mass balance using seasonal observations

    Full text link
    Glaciological mass-balance measurements have been the backbone of internationally coordinated glacier monitoring. The resulting annual observations have been used to understand glacier reactions to climate change, and to assess both regional and global glacier mass changes and related contributions to runoff and sea-level rise. However, the comparability of annual observations is hampered by differences in survey periods and mass-balance amplitudes between glaciers, regions and hemispheres. This study presents a simple approach to temporally downscale glaciological mass balance using seasonal observations and sine functions. The proposed analytical model allows reconstruction of the seasonal course of glacier mass balance at weekly to monthly resolution from only annual or seasonal observations. Strengths and limitations of this analytical approach are discussed and compared with results from numerical mass-balance modelling. Potential applications include seasonal corrections of glaciological and geodetic observations and comparisons to monthly results from spaceborne gravimetry and altimetry

    Historically unprecedented global glacier decline in the early 21st century

    Get PDF
    Observations show that glaciers around the world are in retreat and losing mass. Internationally coordinated for over a century, glacier monitoring activities provide an unprecedented dataset of glacier observations from ground, air and space. Glacier studies generally select specific parts of these datasets to obtain optimal assessments of the mass-balance data relating to the impact that glaciers exercise on global sea-level fluctuations or on regional runoff. In this study we provide an overview and analysis of the main observational datasets compiled by the World Glacier Monitoring Service (WGMS). The dataset on glacier front variations (∼42 000 since 1600) delivers clear evidence that centennial glacier retreat is a global phenomenon. Intermittent readvance periods at regional and decadal scale are normally restricted to a subsample of glaciers and have not come close to achieving the maximum positions of the Little Ice Age (or Holocene). Glaciological and geodetic observations (∼5200 since 1850) show that the rates of early 21st-century mass loss are without precedent on a global scale, at least for the time period observed and probably also for recorded history, as indicated also in reconstructions from written and illustrated documents. This strong imbalance implies that glaciers in many regions will very likely suffer further ice loss, even if climate remains stable

    Dwindling relevance of large volcanic eruptions for global glacier changes in the anthropocene

    Full text link
    Large volcanic eruptions impact climate through the injection of ash and sulfur-containing gases into the atmosphere. While the ash particles fall out rapidly, the gases are converted to sulfate aerosols that reflect solar radiation in the stratosphere and cause a lowering of the global mean surface temperature. Earlier studies have suggested that major volcanic eruptions resulted in positive mass balances and advances of glaciers. Here, we perform a multivariate analysis to decompose global glacier mass changes from 1961 to 2005 into components associated with anthropogenic influences, volcanic and solar activities, and the El Niño-Southern Oscillation. We find that the global glacier mass loss was mainly driven by the anthropogenic forcing, interrupted by a few years of intermittent mass gains following large volcanic eruptions. The relative impact of volcanic eruptions has dwindled due to strongly increasing greenhouse gas concentrations since the mid-20th century

    Massive Black Hole Recoil in High Resolution Hosts

    Full text link
    The final inspiral and coalescence of a black hole binary can produce highly beamed gravitational wave radiation. To conserve linear momentum, the black hole remnant can recoil with "kick" velocity as high as 4000 km/s. We present two sets of full N-body simulations of recoiling massive black holes (MBH) in high-resolution, non-axisymmetric potentials. The host to the first set of simulations is the main halo of the Via Lactea I simulation (Diemand et al. 2007). The nature of the resulting orbits is investigated through a numerical model where orbits are integrated assuming an evolving, triaxial NFW potential, and dynamical friction is calculated directly from the velocity dispersion along the major axes of the main halo of Via Lactea I. By comparing the triaxial case to a spherical model, we find that the wandering time spent by the MBH is significantly increased due to the asphericity of the halo. For kicks larger than 200 km/s, the remnant MBH does not return to the inner 200 pc within 1 Gyr, a timescale an order of magnitude larger than the upper limit of the estimated QSO lifetime. The second set of simulations is run using the outcome of a high-resolution gas-rich merger (Mayer et al. 2007) as host potential. In this case, a recoil velocity of 500 km/s cannot remove the MBH from the nuclear region.Comment: 4 pages, 4 figures. Proceedings of the conference Galactic & Stellar Dynamics In the Era of High Resolution Survey

    Elevation changes of west-central Greenland glaciers from 1985 to 2012 from remote sensing

    Get PDF
    Greenlandic glaciers distinct from the ice sheet make up 12% of the global glacierized area and store about 10% of the global glacier ice volume (Farinotti et al., 2019). However, knowledge about recent climate change-induced volume changes of these 19,000 individual glaciers is limited. The small number of available glaciological and geodetic mass-balance observations have a limited spatial coverage, and the representativeness of these measurements for the region is largely unknown, factors which make a regional assessment of mass balance challenging. Here we use two recently released digital elevation models (DEMs) to assess glacier-wide elevation changes of 1,526 glaciers covering 3,785 km2 in west-central Greenland: The historical AeroDEM representing the surface in 1985 and a TanDEM-X composite representing 2010–2014. The results show that on average glacier surfaces lowered by about 14.0 ± 4.6 m from 1985 until 2012 or 0.5 ± 0.2 m yr−1, which is equivalent to a sample mass loss of ~45.1 ± 14.9 Gt in total or 1.7 ± 0.6 Gt yr−1. Challenges arise from the nature of the DEMs, such as large areas of data voids, fuzzy acquisition dates, and potential radar penetration. We compared several different interpolation methods to assess the best method to fill data voids and constrain unknown survey dates and the associated uncertainties with each method. The potential radar penetration is considered negligible for this assessment in view of the overall glacier changes, the length of the observation period, and the overall uncertainties. A comparison with earlier studies indicates that for glacier change assessments based on ICESat, data selection and averaging methodology strongly influences the results from these spatially limited measurements. This study promotes improved assessments of the contribution of glaciers to sea-level rise and encourages to extend geodetic glacier mass balances to all glaciers on Greenland

    Historical analysis and visualization of the retreat of Findelengletscher, Switzerland, 1859–2010

    Get PDF
    Since the end of the Little Ice Age around 1850, glaciers in Europe have strongly retreated. Thanks to early topographic surveys in Switzerland, accurate maps are available, which enable us to trace glacier changes back in time. The earliest map for all of Switzerland that is usable for a detailed analysis is the Dufour map from around 1850 with subsequent topographic maps on a ~ 20 year interval. Despite the large public and scientific interest in glacier changes through time, this historic dataset has not yet been fully utilized for topographic change assessment or visualization of historic glacier extents. In this study, we use eleven historical topographic maps and more recent digital datasets for the region of Zermatt to analyze geometric changes (length, area and volume) of Findelengletscher as well as for creating animations of glacier evolution through time for use in public communication. All maps were georeferenced, the contour lines digitized, and digital elevation models (DEMs) created and co-registered. Additional digital data like the SRTM X-band DEM and high resolution laser scanning data were used to extend the analysis until 2010. Moreover, one independent DEM from aerial photogrammetry was used for comparison. During the period 1859–2010, Findelengletscher lost 3.5 km of its length (6.9 km in 2010), 4.42 ± 0.13 km² of its area (15.05 ± 0.45 km² in 2010) and 1.32 ± 0.52 km³ of its volume. The average rate of thickness loss is 0.45 ± 0.042 m yr− 1 for the 151 years period. Four periods with high thickness change from − 0.56 m ± 0.28 yr− 1 (1859–1881), − 0.40 ± 0.08 m yr− 1 (1937–1965), − 0.90 ± 0.31 m yr− 1 (1995–2000) and − 1.18 ± 0.02 m yr− 1 (2000–2005) have been identified. Small positive thickness changes were found for the periods 1890–1909 (+ 0.09 ± 0.46 m yr − 1) and 1988–1995 (+ 0.05 ± 0.24 m yr− 1). During its retreat with intermittent periods of advance, the glacier separated into three parts. The above changes are demonstrated through an animation (available from the supplementary material), which has been created to inform the general public

    Glaciers and ice caps

    Full text link

    Toward an imminent extinction of Colombian glaciers?

    Get PDF
    This study documents the current state of glacier coverage in the Colombian Andes, the glacier shrinkage over the twentieth century and discusses indication of their disappearance in the coming decades. Satellite images have been used to update the glacier inventory of Colombia reflecting an overall glacier extent of about 42.4 ± 0.71 km2 in 2016 distributed in four glacierized mountain ranges. Combining these data with older inventories, we show that the current extent is 36% less than in the mid-1990s, 62% less than in the mid-twentieth century and almost 90% less than the Little Ice Age maximum extent. Focusing on Nevado Santa Isabel (Los Nevados National Park), aerial photographs from 1987 and 2005 combined with a terrestrial LiDAR survey show that the mass loss of the former ice cap, which is nowadays parceled into several small glaciers, was about −2.5 m w.e. yr−1 during the last three decades. Radar measurements performed on one of the remnant glaciers, La Conejeras glacier, show that the ice thickness is limited (about 22 m in average in 2014) and that with such a mass loss rate, the glacier should disappear in the coming years. Considering their imbalance with the current climate conditions, their limited altitudinal extent and reduced accumulation areas, and in view of temperature increase expected in future climate scenarios, most of the Colombian glaciers will likely disappear in the coming decades. Only the largest ones located on the highest summits will probably persist until the second half of the twenty-first century although very reducedThis study was conducted in the context of the project Capacity Building and Twinning for Climate Observing Systems (CATCOS) supported by the Federal Office of Meteorology and Climatology MeteoSwiss [contract no. 7F-08114.1], between the Swiss Agency for Development and Cooperation (SDC) and MeteoSwiss, by the Swiss State Secretariat for Economic Affairs (SECO). This work was also supported by SNO GLACIOCLIM; LMI GREAT ICE (IRD); Labex OSUG@2020, Investissements d’avenir: [Grant Number ANR10 LABX56]. M. Ménégoz is supported by the project VOLCADEC funded by the Spanish programme Retos (MINECO/FEDER, ref. CGL2015–70177-R).Peer ReviewedPostprint (author's final draft

    Dendritic subglacial drainage systems in cold glaciers formed by cut-and-closure processes

    Get PDF
    The routing and storage of meltwater and the configuration of drainage systems in glaciers exert a profound influence on glacier behaviour. However, little is known about the hydrological systems of cold glaciers, which form a significant proportion of the total glacier population in the climate sensitive region of the High Arctic. Using glacio-speleological techniques, we obtained direct access to explore and survey three conduit systems and one moulin within the tongue area of Tellbreen, a small cold-based valley glacier in central Spitsbergen. More than 600 m of conduits were surveyed and mapped in plan, profile and cross-section view to analyse the configuration of the drainage system. The investigations revealed that cold-based glaciers can exhibit a dendritic drainage network with supra-, en- and subglacial components formed most likely by cut-and-closure processes as well as surface-to-bed drainage via moulins. Furthermore, we observed that water is stored within the glacier and released gradually via subglacial conduits during the winter months, forming a large and active icing in the proglacial area. The presence of supra-, en- and subglacial components, the surface-to-bed moulin and the dendritic subglacial drainage network suggest that existing models and understanding of the hydrology of cold glaciers needs to be re-evaluated, mostly concerning the different possible pathways and processes that form the hydrological system
    • …
    corecore