8 research outputs found

    Genotype-Phenotype Correlations in Charcot-Marie-Tooth Disease Due to MTMR2 Mutations and Implications in Membrane Trafficking

    Get PDF
    Charcot-Marie-Tooth type 4 (CMT4) is an autosomal recessive severe form of neuropathy with genetic heterogeneity. CMT4B1 is caused by mutations in the myotubularin-related 2 (MTMR2) gene and as a member of the myotubularin family, the MTMR2 protein is crucial for the modulation of membrane trafficking. To enable future clinical trials, we performed a detailed review of the published cases with MTMR2 mutations and describe four novel cases identified through whole-exome sequencing (WES). The four unrelated families harbor novel homozygous mutations in MTMR2 (NM_016156, Family 1: c.1490dupC; p.Phe498IlefsTer2; Family 2: c.1479+1G>A; Family 3: c.1090C>T; p.Arg364Ter; Family 4: c.883C>T; p.Arg295Ter) and present with CMT4B1-related severe early-onset motor and sensory neuropathy, generalized muscle atrophy, facial and bulbar weakness, and pes cavus deformity. The clinical description of the new mutations reported here overlap with previously reported CMT4B1 phenotypes caused by mutations in the phosphatase domain of MTMR2, suggesting that nonsense MTMR2 mutations, which are predicted to result in loss or disruption of the phosphatase domain, are associated with a severe phenotype and loss of independent ambulation by the early twenties. Whereas the few reported missense mutations and also those truncating mutations occurring at the C-terminus after the phosphatase domain cause a rather mild phenotype and patients were still ambulatory above the age 30 years. Charcot-Marie-Tooth neuropathy and Centronuclear Myopathy causing mutations have been shown to occur in proteins involved in membrane remodeling and trafficking pathway mediated by phosphoinositides. Earlier studies have showing the rescue of MTM1 myopathy by MTMR2 overexpression, emphasize the importance of maintaining the phosphoinositides equilibrium and highlight a potential compensatory mechanism amongst members of this pathway. This proved that the regulation of expression of these proteins involved in the membrane remodeling pathway may compensate each other's loss- or gain-of-function mutations by restoring the phosphoinositides equilibrium. This provides a potential therapeutic strategy for neuromuscular diseases resulting from mutations in the membrane remodeling pathway

    Identification of Three Novel Mutations in the FANCA, FANCC, and ITGA2B Genes by Whole Exome Sequencing.

    Get PDF
    Background Various blood diseases are caused by mutations in the FANCA, FANCC, and ITGA2B genes. Exome sequencing is a suitable method for identifying single-gene disease and genetic heterogeneity complaints. Methods Among families who were referred to Narges Genetic and PND Laboratory in 2015-2017, five families with a history of blood diseases were analyzed using the whole exome sequencing (WES) method. Results We detected two novel mutations (c.190-2A>G and c.2840C>G) in the FANCA gene, c. 1429dupA mutation in the FANCC gene, and c.1392A>G mutation in the ITGA2B gene. The prediction of variant pathogenicity has been done using bioinformatics tools such as Mutation taster PhD-SNP and polyphen2 and were confirmed by Sanger sequencing. Conclusions WES could be as a precise tool for identifying the pathologic variants in affected patient and heterozygous carriers among families. This highly successful technique will remain at the forefront of platelet and blood genomic research

    Identification of the rs797045105 in the SERAC1 Gene by Whole-exome Sequencing in a Patient Suspicious of MEGDEL Syndrome

    No full text
    Introduction: Whole Exome Sequencing (WES) has been increasingly utilized in genetic determinants of various inherited diseases. Methods: We applied WES for a patient presenting 3-Methylglutaconic Aciduria (MEG), Deafness (D), Encephalopathy (E), and Leigh-like (L) syndrome. Then Sanger sequencing was used for the detected variant validation.  Results: We found an insertion, rs797045105 (chr6, 158571484, C>CCATG), in the SERAC1 gene with homozygous genotype in the patient and heterozygous genotype in her unaffected parents. Notably, bioinformatics analysis using mutation taster (prob>0.99) and DDIGin (prob=86.51) predicted this mutation as disease-causing. Also, the variant was not present in our database, including 700 exome files. Conclusion: These findings emphasize the pathogenicity of rs797045105 for MEGDEL syndrome. On the other hand, our data shed light on the significance of WES application as a genetic test to identify and characterize the comprehensive spectrum of genetic variation and classification for patients with neuro- metabolic disorders

    Niemann-Pick Diseases; largest Iranian cohort with genetic analysis

    No full text
    Background: Niemann-Pick diseases (NPD) is an autosomal recessive inherited lysosomal lipid storage disorder which occurs due to a defect in cellular cholesterol trafficking, leading to excess lipid accumulation in multiple organ systems such as the brain, lungs, spleen and liver. SPMD1-associated disease includes classic infantile and visceral NPD type A and B respectively. Type C NPD is subacute or juvenile.Methods: Sanger sequencing of the candidate genes for NPD were performed followed by bioinformatic analysis to confirm the types of NPD and to identify novel mutations. All patients underwent full clinical assessment.Results: In this case series, we present two cases with NPD type A, six cases with NPD type B, and 11 cases with type C with various enzymatic defects identified in these cases. Within these 19 patients we present seven previously reported mutations and 10 novel mutations causing NPD.Conclusion: Our report demonstrates that NPD has a variable age of onset and can present early in life. In this study, we investigated the clinical and genetic manifestations of a large Iranian cohort. Understanding the variable presentation of NPD will allow for clinicians to have a high index of suspicion for the disease

    Data from: Biallelic SQSTM1 mutations in early-onset, variably progressive neurodegeneration

    No full text
    Objective: To characterize clinically and molecularly an early-onset, variably progressive neurodegenerative disorder characterized by a cerebellar syndrome with severe ataxia, gaze palsy, dyskinesia, dystonia, and cognitive decline affecting 11 individuals from 3 consanguineous families. Methods: We used whole-exome sequencing (WES) (families 1 and 2) and a combined approach based on homozygosity mapping and WES (family 3). We performed in vitro studies to explore the effect of the nontruncating SQSTM1 mutation on protein function and the effect of impaired SQSTM1 function on autophagy. We analyzed the consequences of sqstm1 down-modulation on the structural integrity of the cerebellum in vivo using zebrafish as a model. Results: We identified 3 homozygous inactivating variants, including a splice site substitution (c.301+2T>A) causing aberrant transcript processing and accelerated degradation of a resulting protein lacking exon 2, as well as 2 truncating changes (c.875_876insT and c.934_936delinsTGA). We show that loss of SQSTM1 causes impaired production of ubiquitin-positive protein aggregates in response to misfolded protein stress and decelerated autophagic flux. The consequences of sqstm1 down-modulation on the structural integrity of the cerebellum in zebrafish documented a variable but reproducible phenotype characterized by cerebellum anomalies ranging from depletion of axonal connections to complete atrophy. We provide a detailed clinical characterization of the disorder; the natural history is reported for 2 siblings who have been followed up for >20 years. Conclusions: This study offers an accurate clinical characterization of this recently recognized neurodegenerative disorder caused by biallelic inactivating mutations in SQSTM1 and links this phenotype to defective selective autophagy

    Biallelic MED27 variants lead to variable ponto-cerebello-lental degeneration with movement disorders

    No full text
    MED27 is a subunit of the Mediator multiprotein complex, which is involved in transcriptional regulation. Biallelic MED27 variants have recently been suggested to be responsible for an autosomal recessive neurodevelopmental disorder with spasticity, cataracts and cerebellar hypoplasia. We further delineate the clinical phenotype of MED27-related disease by characterizing the clinical and radiological features of 57 affected individuals from 30 unrelated families with biallelic MED27 variants.Using exome sequencing and extensive international genetic data sharing, 39 unpublished affected individuals from 18 independent families with biallelic missense variants in MED27 have been identified (29 females, mean age at last follow-up 17 +/- 12.4 years, range 0.1-45). Follow-up and hitherto unreported clinical features were obtained from the published 12 families. Brain MRI scans from 34 cases were reviewed.MED27-related disease manifests as a broad phenotypic continuum ranging from developmental and epileptic-dyskinetic encephalopathy to variable neurodevelopmental disorder with movement abnormalities. It is characterized by mild to profound global developmental delay/intellectual disability (100%), bilateral cataracts (89%), infantile hypotonia (74%), microcephaly (62%), gait ataxia (63%), dystonia (61%), variably combined with epilepsy (50%), limb spasticity (51%), facial dysmorphism (38%) and death before reaching adulthood (16%). Brain MRI revealed cerebellar atrophy (100%), white matter volume loss (76.4%), pontine hypoplasia (47.2%) and basal ganglia atrophy with signal alterations (44.4%). Previously unreported 39 affected individuals had seven homozygous pathogenic missense MED27 variants, five of which were recurrent. An emerging genotype-phenotype correlation was observed.This study provides a comprehensive clinical-radiological description of MED27-related disease, establishes genotype-phenotype and clinical-radiological correlations and suggests a differential diagnosis with syndromes of cerebello-lental neurodegeneration and other subtypes of 'neuro-MEDopathies'.Biallelic variants in MED27 are associated with an ultra-rare neurodevelopmental disorder with spasticity, cataracts and cerebellar hypoplasia. Maroofian et al. further delineate the clinical phenotype of MED27-related disease by characterizing the clinical and radiological features of 57 affected individuals from 30 unrelated families.Peer reviewe
    corecore