417 research outputs found

    Constraining the thermal history of the Warm-Hot Intergalactic Medium

    Full text link
    We have identified a large-scale structure traced by galaxies at z=0.8, within the Lockman Hole, by means of multi-object spectroscopic observations. By using deep XMM images we have investigated the soft X-ray emission from the Warm-Hot Intergalactic Medium (WHIM) expected to be associated with this large-scale structure and we set a tight upper limit to its flux in the very soft 0.2-0.4 keV band. The non-detection requires the WHIM at these redshifts to be cooler than 0.1 keV. Combined with the WHIM emission detections at lower redshift, our result indicates that the WHIM temperature is rapidly decreasing with redshift, as expected in popular cosmological models.Comment: 10 pages, 5 figures, 1 appendix. A&A accepte

    The NuSTAR Extragalactic Surveys: X-Ray Spectroscopic Analysis of the Bright Hard-band Selected Sample

    Get PDF
    We discuss the spectral analysis of a sample of 63 active galactic nuclei (AGN) detected above a limiting flux of S(8-24 keV) = 7 x 10^(-14) erg s^(-1) cm^(-2 in the multi-tiered NuSTAR extragalactic survey program. The sources span a redshift range z = 0-2.1 (median (z) = 0.58). The spectral analysis is performed over the broad 0.5–24 keV energy range, combining NuSTAR with Chandra and/or XMM-Newton data and employing empirical and physically motivated models. This constitutes the largest sample of AGN selected at 〉 10 keV to be homogeneously spectrally analyzed at these flux levels. We study the distribution of spectral parameters such as photon index, column density (N_H), reflection parameter (R), and 10–40 keV luminosity (L_X). Heavily obscured (log[N_H/cm^(-2] ≥ 23) and Compton-thick (CT; log[N_H/cm^(-2)] ≥ 24) AGN constitute ~25% (15–17 sources) and ~2–3% (1–2 sources) of the sample, respectively. The observed N_H distribution agrees fairly well with predictions of cosmic X-ray background population-synthesis models (CXBPSM). We estimate the intrinsic fraction of AGN as a function of N_H, accounting for the bias against obscured AGN in a flux-selected sample. The fraction of CT AGN relative to log[N_H/cm^(-2] = 20-24 AGN is poorly constrained, formally in the range 2–56% (90% upper limit of 66%). We derived a fraction (f_(abs)) of obscured AGN (log[N_H/cm^(-2]= 22-24) as a function of L_X in agreement with CXBPSM and previous z 〈 1 X-ray determinations. Furthermore, f_(abs) at z = 0.1-0.5 and log(L_x/erg s^(-1) ≈ 43.6-44.3 agrees with observational measurements/trends obtained over larger redshift intervals. We report a significant anti-correlation of R with L_X (confirmed by our companion paper on stacked spectra) with considerable scatter around the median R values

    Studying the WHIM Content of the Galaxy Large-Scale Structures along the Line of Sight to H 2356-309

    Full text link
    We make use of a 500ks Chandra HRC-S/LETG spectrum of the blazar H2356-309, combined with a lower S/N spectrum of the same target, to search for the presence of warm-hot absorbing gas associated with two Large-Scale Structures (LSSs) crossed by this sightline at z=0.062 (the Pisces-Cetus Supercluster, PCS) and at z=0.128 ("Farther Sculptor Wall", FSW). No statistically significant (>=3sigma) individual absorption is detected from any of the strong He- or H-like transitions of C, O and Ne at the redshifts of the structures. However we are still able to constrain the physical and geometrical parameters of the associated putative absorbing gas, by performing joint spectral fit of marginal detections and upper limits of the strongest expected lines with our self-consistent hybrid ionization WHIM spectral model. At the redshift of the PCS we identify a warm phase with logT=5.35_-0.13^+0.07 K and log N_H =19.1+/-0.2 cm^-2 possibly coexisting with a hotter and less significant phase with logT=6.9^+0.1_-0.8 K and log N_H=20.1^+0.3_-1.7 cm^-2 (1sigma errors). For the FSW we estimate logT=6.6_-0.2^+0.1 K and log N_H=19.8_-0.8^+0.4 cm^-2. Our constraints allow us to estimate the cumulative number density per unit redshifts of OVII WHIM absorbers. We also estimate the cosmological mass density obtaining Omega_b(WHIM)=(0.021^+0.031_-0.018) (Z/Z_sun)^-1, consistent with the mass density of the intergalactic 'missing baryons' for high metallicities.Comment: 29 pages, 8 figures, 4 tables. Accepted for publication in Ap

    The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow

    Get PDF
    We present the best sensitivity and angular resolution maps of the molecular disk and outflow of Mrk 231, as traced by CO observations obtained with IRAM/PdBI, and we analyze archival Chandra and NuSTAR observations. We constrain the physical properties of both the molecular disk and outflow, the presence of a highly-ionized ultra-fast nuclear wind, and their connection. The molecular outflow has a size of ~1 kpc, and extends in all directions around the nucleus, being more prominent along the south-west to north-east direction, suggesting a wide-angle biconical geometry. The maximum projected velocity of the outflow is nearly constant out to ~1 kpc, thus implying that the density of the outflowing material decreases from the nucleus outwards as r−2r^{-2}. This suggests that either a large part of the gas leaves the flow during its expansion or that the bulk of the outflow has not yet reached out to ~1 kpc, thus implying a limit on its age of ~1 Myr. We find M˙OF=[500−1000] M⊙ yr−1\dot M_{OF}=[ 500-1000]~ M_{\odot}~yr^{-1} and E˙kin,OF=[7−10]×1043\dot E_{kin,OF}=[7-10]\times 10^{43} erg s−1^{-1}. Remarkably, our analysis of the X-ray data reveals a nuclear ultra-fast outflow (UFO) with velocity -20000 km s−1^{-1}, M˙UFO=[0.3−2.1] M⊙yr−1\dot M_{UFO}=[0.3- 2.1] ~M_\odot yr^{-1}, and momentum load P˙UFO/P˙rad=[0.2−1.6]\dot P_{UFO}/\dot P_{rad}=[0.2-1.6].We find E˙kin,UFO∼E˙kin,OF\dot E_{kin,UFO}\sim \dot E_{kin,OF} as predicted for outflows undergoing an energy conserving expansion. This suggests that most of the UFO kinetic energy is transferred to mechanical energy of the kpc-scale outflow, strongly supporting that the energy released during accretion of matter onto super-massive black holes is the ultimate driver of giant massive outflows. We estimate a momentum boost P˙OF/P˙UFO≈[30−60]\dot P_{OF}/\dot P_{UFO}\approx [30-60]. The ratios E˙kin,UFO/Lbol,AGN=[1−5]%\dot E_{kin, UFO}/L_{bol,AGN} =[ 1-5]\% and E˙kin,OF/Lbol,AGN=[1−3]%\dot E_{kin,OF}/L_{bol,AGN} = [1-3]\% agree with the requirements of the most popular models of AGN feedback.Comment: 16 pages, 17 figures. Accepted for publication in A&

    The X-Ray Concentration-Virial Mass Relation

    Full text link
    We present the concentration (c)-virial mass (M) relation of 39 galaxy systems ranging in mass from individual early-type galaxies up to the most massive galaxy clusters, (0.06-20) x 10^{14} M_sun. We selected for analysis the most relaxed systems possessing the highest quality data currently available in the Chandra and XMM public data archives. A power-law model fitted to the X-ray c-M relation requires at high significance (6.6 sigma) that c decreases with increasing M, which is a general feature of CDM models. The median and scatter of the c-M relation produced by the flat, concordance LCDM model (Omega_m=0.3, sigma_8=0.9) agrees with the X-ray data provided the sample is comprised of the most relaxed, early forming systems, which is consistent with our selection criteria. Holding the rest of the cosmological parameters fixed to those in the concordance model the c-M relation requires 0.76< sigma_8 <1.07 (99% conf.), assuming a 10% upward bias in the concentrations for early forming systems. The tilted, low-sigma_8 model suggested by a new WMAP analysis is rejected at 99.99% confidence, but a model with the same tilt and normalization can be reconciled with the X-ray data by increasing the dark energy equation of state parameter to w ~ -0.8. When imposing the additional constraint of the tight relation between sigma_8 and Omega_m from studies of cluster abundances, the X-ray c-M relation excludes (>99% conf.) both open CDM models and flat CDM models with Omega_m ~1. This result provides novel evidence for a flat, low-Omega_m universe with dark energy using observations only in the local (z << 1) universe. Possible systematic errors in the X-ray mass measurements of a magnitude ~10% suggested by CDM simulations do not change our conclusions.Comment: Accepted for Publication in ApJ; 13 pages, 4 figures; minor clarifications and updates; correlation coefficients corrected in Table 1 (correct values were used in the analysis in previous versions); conclusions unchange

    The dense molecular gas in the z∼6\rm z\sim6 QSO SDSS J231038.88+185519.7 resolved by ALMA

    Get PDF
    We present ALMA observations of the CO(6-5) and [CII] emission lines and the sub-millimeter continuum of the z∼6z\sim6 quasi-stellar object (QSO) SDSS J231038.88+185519.7. Compared to previous studies, we have analyzed a synthetic beam that is ten times smaller in angular size, we have achieved ten times better sensitivity in the CO(6-5) line, and two and half times better sensitivity in the [CII] line, enabling us to resolve the molecular gas emission. We obtain a size of the dense molecular gas of 2.9±0.52.9\pm0.5 kpc, and of 1.4±0.21.4\pm0.2 kpc for the 91.5 GHz dust continuum. By assuming that CO(6-5) is thermalized, and by adopting a CO--to--H2H_2 conversion factor αCO=0.8 M⊙ K−1 (km/s)−1 pc2\rm \alpha_{CO} = 0.8~ M_{\odot}~K^{-1}~ (km/s)^{-1} ~pc^{2}, we infer a molecular gas mass of M(H2)=(3.2±0.2)×1010M⊙\rm M(H_2)=(3.2 \pm0.2) \times 10^{10}\rm M_{\odot}. Assuming that the observed CO velocity gradient is due to an inclined rotating disk, we derive a dynamical mass of Mdyn sin2(i)=(2.4±0.5)×1010 M⊙\rm M_{dyn}~sin^2(i) = (2.4\pm0.5) \times 10^{10}~ M_{\odot}, which is a factor of approximately two smaller than the previously reported estimate based on [CII]. Regarding the central black hole, we provide a new estimate of the black hole mass based on the C~IV emission line detected in the X-SHOOTER/VLT spectrum: MBH=(1.8±0.5)×109 M⊙\rm M_{BH}=(1.8\pm 0.5) \times 10^{9}~ M_{\odot}. We find a molecular gas fraction of μ=M(H2)/M∗∼4.4\rm \mu=M(H_2)/M^*\sim4.4, where M∗≈Mdyn−M(H2)−M(BH)\rm M^*\approx M_{dyn} - M(H_2)-M(BH). We derive a ratio vrot/σ≈1−2v_{rot}/\sigma \approx 1-2 suggesting high gas turbulence, outflows/inflows and/or complex kinematics due to a merger event. We estimate a global Toomre parameter Q∼0.2−0.5Q\sim 0.2-0.5, indicating likely cloud fragmentation. We compare, at the same angular resolution, the CO(6-5) and [CII] distributions, finding that dense molecular gas is more centrally concentrated with respect to [CII]. We find that the current BH growth rate is similar to that of its host galaxy.Comment: A&A in pres

    The Absence of Adiabatic Contraction of the Radial Dark Matter Profile in the Galaxy Cluster A2589

    Full text link
    We present an X-ray analysis of the radial mass profile of the radio-quiet galaxy cluster A2589 between 0.015-0.25 r_vir using an XMM-Newton observation. Except for a ~16 kpc shift of the X-ray center of the R=45-60 kpc annulus, A2589 possesses a remarkably symmetrical X-ray image and is therefore an exceptional candidate for precision studies of its mass profile by applying hydrostatic equilibrium. The total gravitating matter profile is well described by the NFW model (fractional residuals <~10%) with c_vir=6.1 +/- 0.3 and M_vir = 3.3 +/- 0.3 x 10^{14} M_sun (r_vir = 1.74 +/- 0.05 Mpc) in excellent agreement with LCDM. When the mass of the hot ICM is subtracted from the gravitating matter profile, the NFW model fitted to the resulting dark matter (DM) profile produces essentially the same result. However, if a component accounting for the stellar mass (M_*) of the cD galaxy is included, then the NFW fit to the DM profile is substantially degraded in the central r ~50 kpc for reasonable M_*/L_V. Modifying the NFW DM halo by adiabatic contraction arising from the early condensation of stellar baryons in the cD galaxy further degrades the fit. The fit is improved substantially with a Sersic-like model recently suggested by high resolution N-body simulations but with an inverse Sersic index, alpha ~0.5, a factor of ~3 higher than predicted. We argue that neither random turbulent motions nor magnetic fields can provide sufficient non-thermal pressure support to reconcile the XMM mass profile with adiabatic contraction of a CDM halo assuming reasonable M_*/L_V. Our results support the scenario where, at least for galaxy clusters, processes during halo formation counteract adiabatic contraction so that the total gravitating mass in the core approximately follows the NFW profile.Comment: 15 pages, 11 figures, accepted for publication in ApJ. Minor changes to match published versio

    Mass assembly and AGN activity at z≳1.5z\gtrsim1.5 in the dense environment of XDCPJ0044.0-2033

    Full text link
    XDCP0044.0-2033 is the most massive galaxy cluster known at z>1.5 and its core shows a high density of galaxies which are experiencing mergers and hosting nuclear activity. We present a multi-wavelength study of a region located 157 kpc from the center of this galaxy cluster, for which we have photometric and spectroscopic multi-wavelength observations (high resolution HST images in F105W, F140W and F160W bands, NIR KMOS data in H and YJ bands and Chandra ACIS-S X-ray data). Our main goal is to investigate the environmental effects acting on the galaxies inhabiting this high density region. We find that the analyzed region hosts at least nine different sources, six of them confirmed to be cluster members within a narrow redshift range 1.5728<z<1.5762. These sources form two different complexes at a projected distance of ∼\sim13 kpc, which are undergoing merging on an estimated timescale off 10-30 Myr. One of the sources shows the presence of a broad H alpha emission line and is classified as Type 1 AGN. This AGN is associated to an X-ray point-like source, whose emission appears moderately obscured (with intrinsic absorption NH∼1022cm−2N_{H} \sim 10^{22} cm^{-2}) and hosts a relatively massive black hole with mass MBH∼107M⊙M_{BH} \sim 10^{7} M_{\odot}, which is accreting with an Eddington ratio of ∼\sim0.2. We conclude that the analyzed region is consistent with being the formation site of a secondary BCG. These findings, together with an in-depth analysis the X-ray morphology of the cluster, suggest a merging scenario of the entire cluster, with two massive halos both harbouring two rapidly evolving BCGs on the verge of being assembled. Our results are also consistent with the scenario in which the AGN phase in member galaxies is triggered by gas-rich mergers, playing a relevant role in the formation of the red sequence of elliptical galaxies observed in the center of local galaxy clusters

    The NuSTAR Extragalactic Surveys: X-Ray Spectroscopic Analysis of the Bright Hard-band Selected Sample

    Get PDF
    We discuss the spectral analysis of a sample of 63 active galactic nuclei (AGN) detected above a limiting flux of S(8-24 keV) = 7 x 10^(-14) erg s^(-1) cm^(-2 in the multi-tiered NuSTAR extragalactic survey program. The sources span a redshift range z = 0-2.1 (median (z) = 0.58). The spectral analysis is performed over the broad 0.5–24 keV energy range, combining NuSTAR with Chandra and/or XMM-Newton data and employing empirical and physically motivated models. This constitutes the largest sample of AGN selected at 〉 10 keV to be homogeneously spectrally analyzed at these flux levels. We study the distribution of spectral parameters such as photon index, column density (N_H), reflection parameter (R), and 10–40 keV luminosity (L_X). Heavily obscured (log[N_H/cm^(-2] ≥ 23) and Compton-thick (CT; log[N_H/cm^(-2)] ≥ 24) AGN constitute ~25% (15–17 sources) and ~2–3% (1–2 sources) of the sample, respectively. The observed N_H distribution agrees fairly well with predictions of cosmic X-ray background population-synthesis models (CXBPSM). We estimate the intrinsic fraction of AGN as a function of N_H, accounting for the bias against obscured AGN in a flux-selected sample. The fraction of CT AGN relative to log[N_H/cm^(-2] = 20-24 AGN is poorly constrained, formally in the range 2–56% (90% upper limit of 66%). We derived a fraction (f_(abs)) of obscured AGN (log[N_H/cm^(-2]= 22-24) as a function of L_X in agreement with CXBPSM and previous z 〈 1 X-ray determinations. Furthermore, f_(abs) at z = 0.1-0.5 and log(L_x/erg s^(-1) ≈ 43.6-44.3 agrees with observational measurements/trends obtained over larger redshift intervals. We report a significant anti-correlation of R with L_X (confirmed by our companion paper on stacked spectra) with considerable scatter around the median R values
    • …
    corecore