106 research outputs found

    Sampling impacts the assessment of tooth growth and replacement rates in archosaurs: implications for paleontological studies

    Get PDF
    Dietary habits in extinct species cannot be directly observed; thus, in the absence of extraordinary evidence, they must be reconstructed with a combination of morphological proxies. Such proxies often include information on dental organization and function such as tooth formation time and tooth replacement rate. In extinct organisms, tooth formation times and tooth replacement rate are calculated, in part via extrapolation of the space between incremental lines in dental tissues representing daily growth (von Ebner Line Increment Width; VEIW). However, to date, little work has been conducted testing assumptions about the primary data underpinning these calculations, specifically, the potential impact of differential sampling and data extrapolation protocols. To address this, we tested a variety of intradental, intramandibular, and ontogentic sampling effects on calculations of mean VEIW, tooth formation times, and replacement rates using histological sections and CT reconstructions of a growth series of three specimens of the extant archosaurian Alligator mississippiensis. We find transect position within the tooth and transect orientation with respect to von Ebner lines to have the greatest impact on calculations of mean VEIW—a maximum number of VEIW measurements should be made as near to the central axis (CA) as possible. Measuring in regions away from the central axis can reduce mean VEIW by up to 36%, causing inflated calculations of tooth formation time. We find little demonstrable impact to calculations of mean VEIW from the practice of subsampling along a transect, or from using mean VEIW derived from one portion of the dentition to extrapolate for other regions of the dentition. Subsampling along transects contributes only minor variations in mean VEIW (<12%) that are dwarfed by the standard deviation (SD). Moreover, variation in VEIW with distance from the pulp cavity likely reflects idiosyncratic patterns related to life history, which are difficult to control for; however, we recommend increasing the number of VEIW measured to minimize this effect. Our data reveal only a weak correlation between mean VEIW and body length, suggesting minimal ontogenetic impacts. Finally, we provide a relative SD of mean VEIW for Alligator of 29.94%, which can be used by researchers to create data-driven error bars for tooth formation times and replacement rates in fossil taxa with small sample sizes. We caution that small differences in mean VEIW calculations resulting from non-standardized sampling protocols, especially in a comparative context, will produce inflated error in tooth formation time estimations that intensify with crown height. The same holds true for applications of our relative SD to calculations of tooth formation time in extinct taxa, which produce highly variable maximum and minimum estimates in large-toothed taxa (e.g., 718–1,331 days in Tyrannosaurus)

    The Slothful Claw: Osteology and Taphonomy of \u3cem\u3eNothronychus mckinleyi\u3c/em\u3e and \u3cem\u3eN. graffami\u3c/em\u3e (Dinosauria: Theropoda) and Anatomical Considerations for Derived Therizinosaurids

    Get PDF
    Nothronychus was the first definitive therizinosaurian discovered in North America and currently represents the most specialized North American therizinosaurian genus. It is known from two species, No. mckinleyi from the Moreno Hill Formation (middle Turonian) in west-central New Mexico, and No. graffami from the Tropic Shale (early Turonian) in south-central Utah. Both species are represented by partial to nearly complete skeletons that have helped elucidate evolutionary trends in Therizinosauria. In spite of the biogeographical and evolutionary importance of these two taxa, neither has received a detailed description. Here, we present comprehensive descriptions of No. mckinleyi and No. graffami, the latter of which represents the most complete therizinosaurid skeleton known to date. We amend previous preliminary descriptions of No. mckinleyi and No. graffami based on these new data and modify previous character states based on an in-depth morphological analysis. Additionally, we review the depositional history of both specimens of Nothronychus and compare their taphonomic modes. We demonstrate that the species were not only separated geographically, but also temporally. Based on ammonoid biozones, the species appear to have been separated by at least 1.5 million years and up to 3 million years. We then discuss the impacts of diagenetic deformation on morphology and reevaluate potentially diagnostic characters in light of these new data. For example, the ulna of No. mckinleyi is curved whereas the ulna of No. graffami was considered straight, a character originally separating the two species. However, here we present the difference as much more likely related to diagenetic compression in No. graffami rather than as a true biologic difference. Finally, we include copies of three-dimensional surface scans of all major bones for both taxa for reference

    Book Review Of Leap Of Faith By Danielle Steel

    Full text link
    Leap of Faith is a novel by a famous novelist Danielle Steel. Leap of Faith debuted at the New York Times and is listed as the best-selling novel to fifty-two of Danielle Steel. This novel is about a girl from France, she is Marie-Ange Hawkins who lives in a magnificent castle name, Chateau de Marmouton. At the castle, she has childhood like everyone\u27s dream. She has the freedom, security and abundant affection of both parents and her brother. But when Marie-Ange Hawkins is eleven years old, a tragic accident that befell his parents take her happiness. She becomes an orphan and is sent to America to live with a cruel aunt of her father. Alone in a foreign land, Marie-Ange Hawkins becomes slave of agricultural land by her aunt, only her friendship with Billy and her dream to return to the castle of her childhood memories that make Marie-Ange endures. But the magic happens when Marie-Ange is 21 years old. She makes it back to the castle Chateau de Marmouton again and even get a chance to be the hostess which is the new owner of the castle, Comte Bernard de Beauchamp proposed her. But behind his proposal, Comte Bernard de Beauchamp keeps his hidden bad intentions to Marie-Ange Hawkins. In desperation and uncertainty areas around her, Marie-Ange has to find the faith and courage to take her last step to save her love ones and herself. Danielle Steel packed this book with very interesting by a simple writing style and storyline in the 1800s which is different from the usual. This book is quite interesting and deserves to be read as entertainment by teenagers and adults

    A CT-based revised description and phylogenetic analysis of the skull of the basal maniraptoran Ornitholestes hermanni Osborn 1903

    Get PDF
    Ornitholestes hermanni was one of the first small-bodiedtheropods named in the 1900s. It is known from a singlespecimen discovered during the American MuseumExpedition of 1900, at the Jurassic Morrison Formationsite known as Bone Cabin Quarry, in Wyoming. It haslong been a critical taxon in understanding the evolutionof the Coelurosauria, the clade that includestyrannosauroids, living birds, and their commonancestors. The holotype specimen comprises a nearlycomplete skull and most of a postcranial skeleton. Despitethis abundant material, its precise phylogeneticrelationships have been difficult to determine. This is inpart due to the intense mediolateral crushing of the skulland the relatively generalized postcranial anatomy. Herewe present the results of a micro- computed tomographybasedinvestigation of the cranial anatomy and subsequentincorporation of these data into a phylogenetic data matrixdesigned to test coelurosaurian interrelationships. We findrobust evidence across different optimality criteria thatOrnitholestes is the earliest-branching oviraptorosaurianspecies. Using parsimony as an optimality criterion, thisphylogenetic position is supported by 14 unambiguoussynapomorphies, including: a short frontal process of thepostorbital; short, deep, and pendant paroccipitalprocesses; a large mandibular foramen; an anterodorsallyoriented dentary symphysis; a surangular that is longerthan the dentary; short maxillary and dentary tooth rows;and procumbent dentary and premaxillary teeth. UsingBayesian fossilized birth-death models, we find highposterior probabilities (>.99) that Ornitholestes is theearliest-branching oviraptorosaurian species. Weadditionally find strong support in both analyses that thesuperficially bat-like and possibly arborealscansoriopterygids are an early branching lineage withinOviraptorosauria. This new phylogenetic position fills in apersistent ghost lineage in Oviraptorosauria and confirmsthat scansoriopterygids are basally branchingoviraptorosaurians that represent an independent origin ofaerial habits, separate from those of dromaeosaurs andavialans.Fil: Chapelle, Kimberley E.. American Museum of Natural History; Estados UnidosFil: Norell, Mark. American Museum of Natural History; Estados UnidosFil: Ford, David P.. University of the Witwatersrand; SudáfricaFil: Hendrickx, Christophe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Radermacher, Viktor J.. University of Minnesota; Estados UnidosFil: Balanoff, Amy. University Johns Hopkins; Estados UnidosFil: Zanno, Lindsay E.. North Carolina Museum of Natural Sciences; Estados UnidosFil: Choiniere, Jonah N.. University of the Witwatersrand; Sudáfrica81st Annual Meeting of the Society of Vertebrate PaleontologyMc LeanEstados UnidosSociety of Vertebrate Paleontolog

    A new microvertebrate assemblage from the Mussentuchit Member, Cedar Mountain Formation: insights into the paleobiodiversity and paleobiogeography of early Late Cretaceous ecosystems in western North America

    Get PDF
    The vertebrate fauna of the Late Cretaceous Mussentuchit Member of the Cedar Mountain Formation has been studied for nearly three decades, yet the fossil-rich unit continues to produce new information about life in western North America approximately 97 million years ago. Here we report on the composition of the Cliffs of Insanity (COI) microvertebrate locality, a newly sampled site containing perhaps one of the densest concentrations of microvertebrate fossils yet discovered in the Mussentuchit Member. The COI locality preserves osteichthyan, lissamphibian, testudinatan, mesoeucrocodylian, dinosaurian, metatherian, and trace fossil remains and is among the most taxonomically rich microvertebrate localities in the Mussentuchit Member. To better refine taxonomic identifications of isolated theropod dinosaur teeth, we used quantitative analyses of taxonomically comprehensive databases of theropod tooth measurements, adding new data on theropod tooth morphodiversity in this poorly understood interval. We further provide the first descriptions of tyrannosauroid premaxillary teeth and document the earliest North American record of adocid remains, extending the appearance of this ancestrally Asian clade by 5 million years in western North America and supporting studies of pre-Cenomaninan Laurasian faunal exchange across Beringia. The overabundance of mesoeucrocodylian remains at the COI locality produces a comparatively low measure of relative biodiversity when compared to other microvertebrate sites in the Mussentuchit Member using both raw and subsampling methods. Much more microvertebrate research is necessary to understand the roles of changing ecology and taphonomy that may be linked to transgression of the Western Interior Seaway or microhabitat variation

    A New Troodontid Theropod, Talos sampsoni gen. et sp. nov., from the Upper Cretaceous Western Interior Basin of North America

    Get PDF
    Troodontids are a predominantly small-bodied group of feathered theropod dinosaurs notable for their close evolutionary relationship with Avialae. Despite a diverse Asian representation with remarkable growth in recent years, the North American record of the clade remains poor, with only one controversial species--Troodon formosus--presently known from substantial skeletal remains.Here we report a gracile new troodontid theropod--Talos sampsoni gen. et sp. nov.--from the Upper Cretaceous Kaiparowits Formation, Utah, USA, representing one of the most complete troodontid skeletons described from North America to date. Histological assessment of the holotype specimen indicates that the adult body size of Talos was notably smaller than that of the contemporary genus Troodon. Phylogenetic analysis recovers Talos as a member of a derived, latest Cretaceous subclade, minimally containing Troodon, Saurornithoides, and Zanabazar. MicroCT scans reveal extreme pathological remodeling on pedal phalanx II-1 of the holotype specimen likely resulting from physical trauma and subsequent infectious processes.Talos sampsoni adds to the singularity of the Kaiparowits Formation dinosaur fauna, which is represented by at least 10 previously unrecognized species including the recently named ceratopsids Utahceratops and Kosmoceratops, the hadrosaurine Gryposaurus monumentensis, the tyrannosaurid Teratophoneus, and the oviraptorosaurian Hagryphus. The presence of a distinct troodontid taxon in the Kaiparowits Formation supports the hypothesis that late Campanian dinosaurs of the Western Interior Basin exhibited restricted geographic ranges and suggests that the taxonomic diversity of Late Cretaceous troodontids from North America is currently underestimated. An apparent traumatic injury to the foot of Talos with evidence of subsequent healing sheds new light on the paleobiology of deinonychosaurians by bolstering functional interpretations of prey grappling and/or intraspecific combat for the second pedal digit, and supporting trackway evidence indicating a minimal role in weight bearing

    The endocranial anatomy of Therizinosauria and its implications for sensory and cognitive function

    Get PDF
    BACKGROUND: Therizinosauria is one of the most enigmatic and peculiar clades among theropod dinosaurs, exhibiting an unusual suite of characters, such as lanceolate teeth, a rostral rhamphotheca, long manual claws, and a wide, opisthopubic pelvis. This specialized anatomy has been associated with a shift in dietary preferences and an adaptation to herbivory. Despite a large number of discoveries in recent years, the fossil record for Therizinosauria is still relatively poor, and cranial remains are particularly rare. METHODOLOGY/PRINCIPAL FINDINGS: Based on computed tomographic (CT) scanning of the nearly complete and articulated skull of Erlikosaurus andrewsi, as well as partial braincases of two other therizinosaurian taxa, the endocranial anatomy is reconstructed and described. The wider phylogenetic range of the described specimens permits the evaluation of sensory and cognitive capabilities of Therizinosauria in an evolutionary context. The endocranial anatomy reveals a mosaic of plesiomorphic and derived characters in therizinosaurians. The anatomy of the olfactory apparatus and the endosseous labyrinth suggests that olfaction, hearing, and equilibrium were well-developed in therizinosaurians and might have affected or benefited from an enlarged telencephalon. CONCLUSION/SIGNIFICANCE: This study presents the first appraisal of the evolution of endocranial anatomy and sensory adaptations in Therizinosauria. Despite their phylogenetically basal position among maniraptoran dinosaurs, therizinosaurians had developed the neural pathways for a well developed sensory repertoire. In particular olfaction and hearing may have played an important role in foraging, predator evasion, and/or social complexity

    Inner ear sensory system changes as extinct crocodylomorphs transitioned from land to water

    Get PDF
    Major evolutionary transitions, in which animals develop new body plans and adapt to dramatically new habitats and lifestyles, have punctuated the history of life. The origin of cetaceans from land-living mammals is among the most famous of these events. Much earlier, during the Mesozoic Era, many reptile groups also moved from land to water, but these transitions are more poorly understood. We use computed tomography to study changes in the inner ear vestibular system, involved in sensing balance and equilibrium, as one of these groups, extinct crocodile relatives called thalattosuchians, transitioned from terrestrial ancestors into pelagic (open ocean) swimmers. We find that the morphology of the vestibular system corresponds to habitat, with pelagic thalattosuchians exhibiting a more compact labyrinth with wider semicircular canal diameters and an enlarged vestibule, reminiscent of modified and miniaturized labyrinths of other marine reptiles and cetaceans. Pelagic thalattosuchians with modified inner ears were the culmination of an evolutionary trend with a long semiaquatic phase, and their pelagic vestibular systems appeared after the first changes to the postcranial skeleton that enhanced their ability to swim. This is strikingly different from cetaceans, which miniaturized their labyrinths soon after entering the water, without a prolonged semiaquatic stage. Thus, thalattosuchians and cetaceans became secondarily aquatic in different ways and at different paces, showing that there are different routes for the same type of transition.Facultad de Ciencias Naturales y Muse

    Inner ear sensory system changes as extinct crocodylomorphs transitioned from land to water

    Get PDF
    © 2020 National Academy of Sciences. All rights reserved. Major evolutionary transitions, in which animals develop new body plans and adapt to dramatically new habitats and lifestyles, have punctuated the history of life. The origin of cetaceans from land-living mammals is among the most famous of these events. Much earlier, during the Mesozoic Era, many reptile groups also moved from land to water, but these transitions are more poorly understood. We use computed tomography to study changes in the inner ear vestibular system, involved in sensing balance and equilibrium, as one of these groups, extinct crocodile relatives called thalattosuchians, transitioned from terrestrial ancestors into pelagic (open ocean) swimmers. We find that the morphology of the vestibular system corresponds to habitat, with pelagic thalattosuchians exhibiting a more compact labyrinth with wider semicircular canal diameters and an enlarged vestibule, reminiscent of modified and miniaturized labyrinths of other marine reptiles and cetaceans. Pelagic thalattosuchians with modified inner ears were the culmination of an evolutionary trend with a long semiaquatic phase, and their pelagic vestibular systems appeared after the first changes to the postcranial skeleton that enhanced their ability to swim. This is strikingly different from cetaceans, which miniaturized their labyrinths soon after entering the water, without a prolonged semiaquatic stage. Thus, thalattosuchians and cetaceans became secondarily aquatic in different ways and at different paces, showing that there are different routes for the same type of transition

    Tempo and Pattern of Avian Brain Size Evolution

    Get PDF
    Relative brain sizes in birds can rival those of primates, but large-scale patterns and drivers of avian brain evolution remain elusive. Here, we explore the evolution of the fundamental brain-body scaling relationship across the origin and evolution of birds. Using a comprehensive dataset sampling> 2,000 modern birds, fossil birds, and theropod dinosaurs, we infer patterns of brain-body co-variation in deep time. Our study confirms that no significant increase in relative brain size accompanied the trend toward miniaturization or evolution of flight during the theropod-bird transition. Critically, however, theropods and basal birds show weaker integration between brain size and body size, allowing for rapid changes in the brain-body relationship that set the stage for dramatic shifts in early crown birds. We infer that major shifts occurred rapidly in the aftermath of the Cretaceous-Paleogene mass extinction within Neoaves, in which multiple clades achieved higher relative brain sizes because of a reduction in body size. Parrots and corvids achieved the largest brains observed in birds via markedly different patterns. Parrots primarily reduced their body size, whereas corvids increased body and brain size simultaneously (with rates of brain size evolution outpacing rates of body size evolution). Collectively, these patterns suggest that an early adaptive radiation in brain size laid the foundation for subsequent selection and stabilization
    • …
    corecore