122 research outputs found
Simulating growth-based harvest adaptive to future climate change
Forests are the main source of biomass production from solar energy and take
up around 2.4±0.4 PgC per year globally. Future changes in climate
may affect forest growth and productivity. Currently, state-of-the-art Earth
system models use prescribed wood harvest rates in future climate
projections. These rates are defined by integrated assessment models (IAMs),
only accounting for regional wood demand and largely ignoring the supply side
from forests. Therefore, we assess how global growth and harvest potentials
of forests change when they are allowed to respond to changes in
environmental conditions. For this, we simulate wood harvest rates oriented
towards the actual rate of forest growth. Applying this growth-based harvest
rule (GB) in JSBACH, the land component of the Max Planck Institute's
Earth system model, forced by several future climate scenarios, we realized a
growth potential 2 to 4 times (3–9 PgC yr−1) the harvest rates
prescribed by IAMs (1–3 PgC yr−1). Limiting GB to managed forest areas (MF), we simulated a harvest potential of 3–7 PgC yr−1, 2 to 3 times
higher than IAMs. This highlights the need to account for the dependence of
forest growth on climate. To account for the long-term effects of wood harvest as
integrated in IAMs, we added a life cycle analysis, showing that the higher
supply with MF as an adaptive forest harvesting rule may improve the net
mitigation effects of forest harvest during the 21st century by
sequestering carbon in anthropogenic wood products.</p
Integrated approach for zonation of a mid-Cenomanian carbonate reservoir in a sequence stratigraphic framework
The mid-Cenomanian Mishrif Formation (Fm.) is considered as one of the most important rudist-bearing reservoir horizons in the Sirri Oil Fields of the Persian Gulf. Due to the general heterogeneity of carbonate reservoirs, the use of an integrated approach is helpful for investigating porosity and permeability distribution along with recognizing controlling pore system factors in the reservoir. Thus, for the reservoir characterization of the Mishrif Fm., an integrated approach including facies analysis, diagenetic history and sequence stratigraphic analysis is considered. Detailed petrographic studies showed a total of eight microfacies and seven facies belts, related to inner ramp to the basin of a homoclinal carbonate ramp. Humid climatic condition and tectonic activity, associated with eustatic sea-level fluctuations during the mid-Cretaceous, led to meteoric diagenesis of the Mishrif carbonates during subaerial exposures (mid-Cenomanian and Cenomanian-Turonian disconformities). General diagenetic overprints and modifications include micritization, cementation, dissolution, compaction, dolomitization, pyritization and fracturing. Considering this reservoir in the sequence stratigraphic framework reveals that the reservoir zones development is basically related to the Cenomanian–Turonian sequence boundary, recognized in the three studied wells, and also to the mid-Cenomanian boundary, identified only in one well. In addition, pore system properties were inspected by differentiation of Hydraulic Flow Units (HFUs) within the reservoir. The identified flow units, based on their capability for fluid flow, can be classified into four main rock types with very high- (HFUD), high- (HFUC), medium- (HFUB) and low-quality (HFUA). Accordingly, this study shows that the main part of the Mishrif Reservoir is affected by diagenetic processes related to subaerial exposures, resulting in zones with higher storage capacity and fluid flow rates. So, the study of depositional and diagenetic characteristics of the Mishrif carbonates in the sequence stratigraphy framework is essential to unravel the reservoir heterogeneity, and to describe the reservoir zones and their distribution in the field and regional scale. In addition, observed changes in the thickness of hydrocarbon column are attributed to the different location of the studied wells on the anticline structures, which show a tilted oil-water contact with a slope to the North
AN EFFECTIVE OPTIMIZATION ALGORITHM FOR LOCALLY NONCONVEX LIPSCHITZ FUNCTIONS BASED ON MOLLIFIER SUBGRADIENTS
We present an effective algorithm for minimization of locally nonconvex Lipschitz functions based on mollifier functions approximating the Clarke generalized gradient. To this aim, first we approximate the Clarke generalized gradient by mollifier subgradients. To construct this approximation, we use a set of averaged functions gradients. Then, we show that the convex hull of this set serves as a good approximation for the Clarke generalized gradient. Using this approximation of the Clarke generalized gradient, we establish an algorithm for minimization of locally Lipschitz functions. Based on mollifier subgradient approximation, we propose a dynamic algorithm for finding a direction satisfying the Armijo condition without needing many subgradient evaluations. We prove that the search direction procedure terminates after finitely many iterations and show how to reduce the objective function value in the obtained search direction. We also prove that the first order optimality conditions are satisfied for any accumulation point of the sequence constructed by the algorithm. Finally, we implement our algorithm with MATLAB codes and approximate averaged functions gradients by the Monte-Carlo method. The numerical results show that our algorithm is effectively more efficient and also more robust than the GS algorithm, currently perceived to be a competitive algorithm for minimization of nonconvex Lipschitz functions
Recommended from our members
Realizing Mitigation Efficiency of European Commercial Forests by Climate Smart Forestry
European temperate and boreal forests sequester up to 12% of Europe's annual carbon emissions. Forest carbon density can be manipulated through management to maximize its climate mitigation potential, and fast-growing tree species may contribute the most to Climate Smart Forestry (CSF) compared to slow-growing hardwoods. This type of CSF takes into account not only forest resource potentials in sequestering carbon, but also the economic impact of regional forest products and discounts both variables over time. We used the process-based forest model 4 C to simulate European commercial forests' growth conditions and coupled it with an optimization algorithm to simulate the implementation of CSF for 18 European countries encompassing 68.3 million ha of forest (42.4% of total EU-28 forest area). We found a European CSF policy that could sequester 7.3-11.1 billion tons of carbon, projected to be worth 103 to 141 billion euros in the 21st century. An efficient CSF policy would allocate carbon sequestration to European countries with a lower wood price, lower labor costs, high harvest costs, or a mixture thereof to increase its economic efficiency. This policy prioritized the allocation of mitigation efforts to northern, eastern and central European countries and favored fast growing conifers Picea abies and Pinus sylvestris to broadleaves Fagus sylvatica and Quercus species
Suggesting a full two level experimental factorial model with three factors to optimize Ti-HA biocomposite properties
A metal matrix composites (MMCs) is introduced to serve as synthetic bone grafts. The MMC was synthetized via powder metallurgical method after milling raw powder mixture of hydroxyapatite (HA) particles and pure titanium (Ti) powder. A full two level experimental factorial model with three factors (2^3) was developed to study the effect of three main parameters of synthetizing process on the hardness, density, and crystallite size of the composite. The synthetizing process parameters under consideration were the mechanical alloying time as well as the ceramic powder initial size and its mass fraction in the mixed powder. The results demonstrate that the composite’s hardness is increasing with higher HA mass fraction (W/W) of the composite and longer milling time. The analysis of data also show that the initial HA particle size has insignificant influence on the composite’s hardness, while higher HA content fraction in the MMC decreases the density of the composite
Integrated approach for zonation of a mid-Cenomanian carbonate reservoir in a sequence stratigraphic framework
The mid-Cenomanian Mishrif Formation (Fm.) is considered as one of the most important rudist-bearing reservoir horizons in the Sirri Oil Fields of the Persian Gulf. Due to the general heterogeneity of carbonate reservoirs, the use of an integrated approach is helpful for investigating porosity and permeability distribution along with recognizing controlling pore system factors in the reservoir. Thus, for the reservoir characterization of the Mishrif Fm., an integrated approach including facies analysis, diagenetic history and sequence stratigraphic analysis is considered. Detailed petrographic studies showed a total of eight microfacies and seven facies belts, related to inner ramp to the basin of a homoclinal carbonate ramp. Humid climatic condition and tectonic activity, associated with eustatic sea-level fluctuations during the mid-Cretaceous, led to meteoric diagenesis of the Mishrif carbonates during subaerial exposures (mid-Cenomanian and Cenomanian-Turonian disconformities). General diagenetic overprints and modifications include micritization, cementation, dissolution, compaction, dolomitization, pyritization and fracturing. Considering this reservoir in the sequence stratigraphic framework reveals that the reservoir zones development is basically related to the Cenomanian-Turonian sequence boundary, recognized in the three studied wells, and also to the mid-Cenomanian boundary, identified only in one well. In addition, pore system properties were inspected by differentiation of Hydraulic Flow Units (HFUs) within the reservoir. The identified flow units, based on their capability for fluid flow, can be classified into four main rock types with very high- (HFUD), high- (HFUC), medium- (HFUB) and low-quality (HFUA). Accordingly, this study shows that the main part of the Mishrif Reservoir is affected by diagenetic processes related to subaerial exposures, resulting in zones with higher storage capacity and fluid flow rates. So, the study of depositional and diagenetic characteristics of the Mishrif carbonates in the sequence stratigraphy framework is essential to unravel the reservoir heterogeneity, and to describe the reservoir zones and their distribution in the field and regional scale. In addition, observed changes in the thickness of hydrocarbon column are attributed to the different location of the studied wells on the anticline structures, which show a tilted oil-water contact with a slope to the Nort
Inconsistent recognition of uncertainty in studies of climate change impacts on forests
Petr, M., Vacchiano, G., Thom, D., Mairota, P., Kautz, M., Gonçalves, L. M. D. S., ... Reyer, C. P. O. (2019). Inconsistent recognition of uncertainty in studies of climate change impacts on forests. Environmental Research Letters, 14(11), 1-13. [113003]. https://doi.org/10.1088/1748-9326/ab4670Background. Uncertainty about climate change impacts on forests can hinder mitigation and adaptation actions. Scientific enquiry typically involves assessments of uncertainties, yet different uncertainty components emerge in different studies. Consequently, inconsistent understanding of uncertainty among different climate impact studies (from the impact analysis to implementing solutions) can be an additional reason for delaying action. In this review we (a) expanded existing uncertainty assessment frameworks into one harmonised framework for characterizing uncertainty, (b) used this framework to identify and classify uncertainties in climate change impacts studies on forests, and (c) summarised the uncertainty assessment methods applied in those studies. Methods. We systematically reviewed climate change impact studies published between 1994 and 2016. We separated these studies into those generating information about climate change impacts on forests using models -'modelling studies', and those that used this information to design management actions-'decision-making studies'. We classified uncertainty across three dimensions: nature, level, and location, which can be further categorised into specific uncertainty types. Results. We found that different uncertainties prevail in modelling versus decision-making studies. Epistemic uncertainty is the most common nature of uncertainty covered by both types of studies, whereas ambiguity plays a pronounced role only in decision-making studies. Modelling studies equally investigate all levels of uncertainty, whereas decision-making studies mainly address scenario uncertainty and recognised ignorance. Finally, the main location of uncertainty for both modelling and decision-making studies is within the driving forces-representing, e.g. socioeconomic or policy changes. The most frequently used methods to assess uncertainty are expert elicitation, sensitivity and scenario analysis, but a full suite of methods exists that seems currently underutilized. Discussion & Synthesis. The misalignment of uncertainty types addressed by modelling and decision-making studies may complicate adaptation actions early in the implementation pathway. Furthermore, these differences can be a potential barrier for communicating research findings to decision-makers.publishersversionpublishe
TACAN is an essential component of the mechanosensitive ion channel responsible for pain sensing
Mechanotransduction, the conversion of mechanical stimuli into electrical signals, is a fundamental process underlying several physiological functions such as touch and pain sensing, hearing and proprioception. This process is carried out by specialized mechanosensitive ion channels whose identities have been discovered for most functions except pain sensing. Here we report the identification of TACAN (Tmem120A), an essential subunit of the mechanosensitive ion channel responsible for sensing mechanical pain. TACAN is expressed in a subset of nociceptors, and its heterologous expression increases mechanically-evoked currents in cell lines. Purification and reconstitution of TACAN in synthetic lipids generates a functional ion channel. Finally, knocking down TACAN decreases the mechanosensitivity of nociceptors and reduces behavioral responses to mechanical but not to thermal pain stimuli, without affecting the sensitivity to touch stimuli. We propose that TACAN is a pore-forming subunit of the mechanosensitive ion channel responsible for sensing mechanical pain
- …