14 research outputs found

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Learning Heterogeneous Spatial-Temporal Representation for Bike-Sharing Demand Prediction

    No full text
    Bike-sharing systems, aiming at meeting the public’s need for ”last mile” transportation, are becoming popular in recent years. With an accurate demand prediction model, shared bikes, though with a limited amount, can be effectively utilized whenever and wherever there are travel demands. Despite that some deep learning methods, especially long shortterm memory neural networks (LSTMs), can improve the performance of traditional demand prediction methods only based on temporal representation, such improvement is limited due to a lack of mining complex spatial-temporal relations. To address this issue, we proposed a novel model named STG2Vec to learn the representation from heterogeneous spatial-temporal graph. Specifically, we developed an event-flow serializing method to encode the evolution of dynamic heterogeneous graph into a special language pattern such as word sequence in a corpus. Furthermore, a dynamic attention-based graph embedding model is introduced to obtain an importance-awareness vectorized representation of the event flow. Additionally, together with other multi-source information such as geographical position, historical transition patterns and weather, e.g., the representation learned by STG2Vec can be fed into the LSTMs for temporal modeling. Experimental results from Citi-Bike electronic usage records dataset in New York City have illustrated that the proposed model can achieve competitive prediction performance compared with its variants and other baseline models

    Exploring the Influence Mechanism of Meteorological Conditions on the Concentration of Suspended Solids and Chlorophyll-a in Large Estuaries Based on MODIS Imagery

    No full text
    In estuary areas, meteorological conditions have become unstable under the continuous effects of climate change, and the ecological backgrounds of such areas have strongly been influenced by anthropic activities. Consequently, the water quality of these areas is obviously affected. In this research, we identified periods of fluctuation of the general meteorological conditions in the Yangtze River Estuary using a wavelet analysis. Additionally, we performed a spatiotemporal evaluation of the water quality in the fluctuating period by using remote sensing modeling. Then, we explored how the fluctuating meteorological factors affect the distribution of total suspended solids (TSS) and chlorophyll-a (Chla) concentration. (1) The results show that from 2000 to 2015, temperature did not present significant fluctuations, while wind speed (WS) and precipitation (PR) presented the same fluctuation period from January 2012 to December 2012. (2) Based on the measured water sample data associated with Moderate Resolution Imaging Spectroradiometer (MODIS) imagery, we developed a water quality algorithm and depicted the TSS and Chla concentrations within the WS and PR fluctuating period. (3) We found that the TSS concentration decreased with distance from the shore, while the Chla concentration showed an initially decreasing trend followed by an increasing trend; moreover, these two water quality parameters presented different inter-annual variations. Then, we discussed the correlation between the changes in the TSS and Chla concentrations and the WS and PR variables. The contribution of this research is reflected in two aspects: 1. variations in water quality parameters over a wide range of water bodies can be evaluated based on MODIS data; 2. data from different time periods showed that the fluctuations of meteorological elements had different impacts on water bodies based on the distance from the shore. The results provide new insights for the management of estuary water environments

    Spatiotemporal Distribution and Evolution of Digestive Tract Cancer Cases in Lujiang County, China since 2012

    No full text
    This study aims to analyze the spatiotemporal distribution and evolution of digestive tract cancer (DTC) in Lujiang County, China by using the geographic information system technology. Results of this study are expected to provide a scientific basis for effective prevention and control of DTC. The data on DTC cases in Lujiang County, China, were downloaded from the Data Center of the Center for Disease Control and Prevention in Hefei, Anhui Province, China, while the demographic data were sourced from the demographic department in China. Systematic statistical analyses, including the spatial empirical Bayes smoothing, spatial autocorrelation, hotspot statistics, and Kulldorff’s retrospective space-time scan, were used to identify the spatial and spatiotemporal clusters of DTC. GM(1,1) and standard deviation ellipses were then applied to predict the future evolution of the spatial pattern of the DTC cases in Lujiang County. The results showed that DTC in Lujiang County had obvious spatiotemporal clustering. The spatial distribution of DTC cases increases gradually from east to west in the county in a stepwise pattern. The peak of DTC cases occurred in 2012–2013, and the high-case spatial clusters were located mainly in the northwest of Lujiang County. At the 99% confidence interval, two spatiotemporal clusters were identified. From 2012 to 2017, the cases of DTC in Lujiang County gradually shifted to the high-incidence area in the northwest, and the spatial distribution range experienced a process of “dispersion-clustering”. The cases of DTC in Lujiang County will continue to move to the northwest from 2018 to 2025, and the predicted spatial clustering tends to be more obvious

    Tree Radial Growth Responses to Climate and Reservoir Impoundment in Valleys in Southwestern China

    No full text
    Southwestern China is a critical biodiversity hotspot area, and many large hydroelectric projects have been established in the valleys in the region. Tree growth in the valleys will be affected by both regional climate and reservoir impoundment. However, it remains unknown whether the radial growth of trees in the valleys has a common response pattern to the regional climate, and it is also unclear whether the response of radial growth to reservoir impoundment can be detected. In this study, we developed tree-ring width chronologies of Pinus yunnanensis Franch. collected at 11 sites with vertical and horizontal gradients to three hydroelectric reservoirs in three riverine valleys in southwestern China. We analyzed the radial growth responses to the regional climate from 1986 to 2017 by correlation with instrumental meteorological data. Tree growth responses to reservoir impoundment were investigated through spatial and temporal comparisons using the change in the Euclidean distance and difference test. We also distinguished their responses at tree-ring sites without influenced by reservoir impoundment including two sites in the valleys and seven sites at high elevations. The results showed that the climate conditions in May and the dry season before the growth season significantly limit the radial growth in the valleys, which is different to that at high-elevation areas in southwestern China. Growth variations in the valleys are related to elevations and the trees in similar slopes positions exhibit similar responses. For trees in the low slope positions, both variance and mean values of radial growth are affected by reservoir impoundment. Trees at relatively low sites (i.e., sites M2, R2, L2), rather than the trees close to the reservoirs (i.e., sites M1, R1, L1), respond more sensitively to reservoir impoundment
    corecore