36 research outputs found

    Precise and label-free tumour cell recognition based on a black phosphorus nanoquenching platform

    Get PDF
    Breast cancer is a type of heterogeneous disease, which manifests as different molecular subtypes due to the complex nature of tumour initiation, progression, and metastasis. Accurate identification of a breast cancer subtype plays crucial roles in breast cancer management. Herein, taking advantage of the efficient quenching properties of black phosphorus nanosheets (BPNSs), in combination with the high specificity of ssDNA (or RNA) aptamer, a fluorometric duplexed assay that is capable of the simultaneous detection of two tumour markers within one run is developed. When mixed with BPNSs, the fluorescence of both FAM and Cy3 labelled aptamers was quenched. The presence of different subtypes of breast cancer cells restored the FAM and Cy3 fluorescence in distinct patterns according to their intrinsic features. The proposed assay can precisely recognise label-free breast cancer subtypes, providing an efficient method for cell type identification and guidance for subsequent breast cancer treatment. The significance of the proposed study is two-fold. First, we provide a simple method for sensitive and specific tumour cell detection; secondly, and more importantly, the proposed dual assay allows precise recognition of tumour cells and thus opens a door for rapid characterization and sorting of a wide range of tumours without using expensive instruments

    Label-free microfluidic paper-based electrochemical aptasensor for ultrasensitive and simultaneous multiplexed detection of cancer biomarkers

    Get PDF
    Simultaneous detection of multiple tumor biomarkers in body fluids could facilitate early diagnosis of lung cancer, so as to provide scientific reference for clinical treatment. This paper depicted a multi-parameter paper-based electrochemical aptasensor for simultaneous detection of carcinoembryonic antigen (CEA) and neuron-specific enolase (NSE) in a clinical sample with high sensitivity and specificity. The paper-based device was fabricated through wax printing and screen-printing, which enabled functions of sample filtration and sample auto injection. Amino functional graphene (NG)-Thionin (THI)- gold nanoparticles (AuNPs) and Prussian blue (PB)- poly (3,4- ethylenedioxythiophene) (PEDOT)- AuNPs nanocomposites were synthesized respectively. They were used to modify the working electrodes not only for promoting the electron transfer rate, but also for immobilization of the CEA and NSE aptamers. A label-free electrochemical method was adopted, enabling a rapid simple point-of-care testing. Experimental results showed that the proposed multi-parameter aptasensor exhibited good linearity in ranges of 0.01-500 ng mL for CEA (R  = 0.989) and 0.05-500 ng mL for NSE (R  = 0.944), respectively. The limit of detection (LOD) was 2 pg mL for CEA and 10 pg mL for NSE. In addition, the device was evaluated using clinical serum samples and received a good correlation with large electrochemical luminescence (ECL) equipment, which would offer a new platform for early cancer diagnostics, especially in those resource-limit areas

    Direct Laser Writing of Graphene Made from Chemical Vapor Deposition for Flexible, Integratable Micro-Supercapacitors with Ultrahigh Power Output

    Get PDF
    High‐performance yet flexible micro‐supercapacitors (MSCs) hold great promise as miniaturized power sources for increasing demand of integrated electronic devices. Herein, this study demonstrates a scalable fabrication of multilayered graphene‐based MSCs (MG‐MSCs), by direct laser writing (DLW) of stacked graphene films made from industry‐scale chemical vapor deposition (CVD). Combining the dry transfer of multilayered CVD graphene films, DLW allows a highly efficient fabrication of large‐areal MSCs with exceptional flexibility, diverse planar geometry, and capability of customer‐designed integration. The MG‐MSCs exhibit simultaneously ultrahigh energy density of 23 mWh cm−3 and power density of 1860 W cm−3 in an ionogel electrolyte. Notably, such MG‐MSCs demonstrate an outstanding flexible alternating current line‐filtering performance in poly(vinyl alcohol) (PVA)/H2SO4 hydrogel electrolyte, indicated by a phase angle of −76.2° at 120 Hz and a resistance–capacitance constant of 0.54 ms, due to the efficient ion transport coupled with the excellent electric conductance of the planar MG microelectrodes. MG–polyaniline (MG‐PANI) hybrid MSCs fabricated by DLW of MG‐PANI hybrid films show an optimized capacitance of 3.8 mF cm−2 in PVA/H2SO4 hydrogel electrolyte; an integrated device comprising MG‐MSCs line filtering, MG‐PANI MSCs, and pressure/gas sensors is demonstrated

    Increased Glycogen Synthase Kinase-3β and Hexose-6-Phosphate Dehydrogenase Expression in Adipose Tissue May Contribute to Glucocorticoid-Induced Mouse Visceral Adiposity

    Get PDF
    BACKGROUND Increased adiposity in visceral depots is a crucial feature associated with glucocorticoid (GC) excess. The action of GCs in target tissue is regulated by GC receptor (GR) and 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) coupled with hexose-6-phosphate dehydrogenase (H6pdh). Glycogen synthase kinase-3β (GSK3β) is known to be a crucial mediator of ligand-dependent gene transcription. We hypothesized that the major effects of corticosteroids on adipose fat accumulation are in part medicated by changes in GSK3β and H6pdh. METHODS We characterized the alterations of GSK3β and GC metabolic enzymes, and determined the impact of GR antagonist mifepristone on obesity-related genes and the expression of H6pdh and 11ß-HSD1 in adipose tissue of mice exposed to excess GC as well as in in vitro studies using 3T3-L1 adipocytes treated with GCs. RESULTS Corticosterone (CORT) exposure increased abdominal fat mass and induced expression of lipid synthase ACC and ACL with activation of GSK3β phosphorylation in abdominal adipose tissue of C57BL/6J mice. Increased pSer9 GSK3β was correlated with induction of H6pdh and 11ß-HSD1. Additionally, mifepristone treatment reversed the production of H6pdh and attenuated CORT-mediated production of 11ß-HSD1 and lipogenic gene expression with reduction of pSer9 GSK3β, thereby leading to improvement of phenotype of adiposity within adipose tissue in mice treated with excess GCs. Suppression of pSer9 GSK3β by mifepristone was accompanied by activation of pThr308 Akt and blockade of CORT-induced adipogenic transcriptor C/EBPα and PPARγ. In addition, mifepristone also attenuated CORT-mediated activation of IRE1α/XBP1. Additionally, reduction of H6pdh by shRNA showed comparable effects to mifepristone on attenuating CORT-induced expression of GC metabolic enzymes and improved lipid accumulation in vitro in 3T3-L1 adipocytes. CONCLUSION These findings suggest that elevated adipose GSK3β and H6pdh expression contribute to 11ß-HSD1 mediating hypercortisolism associated with visceral adiposity

    Mapping blue-ice areas in Antarctica using ETM+ and MODIS data

    Get PDF
    AbstractBlue-ice areas (BIAs) and their geographical distribution in Antarctica were mapped using Landsat-7 ETM+ images with 15 m spatial resolution obtained during the 1999–2003 austral summers and covering the area north of 82.5° S, and a snow grain-size image of the MODIS-based Mosaic of Antarctica (MOA) dataset with 125 m grid spacing acquired during the 2003/04 austral summer from 82.5°S to the South Pole. A map of BIAs was created with algorithms of thresholds based on band ratio and reflectance for ETM+ data and thresholds based on snow grain size for the MOA dataset. The underlying principle is that blue ice can be separated from snow or rock by their spectral discrepancies and by different grain sizes of snow and ice. We estimate the total area of BIAs in Antarctica during the data acquisition period is 234 549 km2, or 1.67% of the area of the continent. Blue ice is scattered widely over the continent but is generally located in coastal or mountainous regions. The BIA dataset presented in this study is the first map covering the entire Antarctic continent sourced solely from ETM+ and MODIS data. This dataset can potentially benefit other studies in glaciology, meteorology, climatology and paleoclimate, meteorite collection and airstrip site selection.</jats:p

    Low sample volume origami-paper-based graphene-modified aptasensors for label-free electrochemical detection of cancer biomarker-EGFR

    Get PDF
    In this work, an electrochemical paper-based aptasensor was fabricated for label-free and ultrasensitive detection of epidermal growth factor receptor (EGFR) by employing anti-EGFR aptamers as the bio-recognition element. The device used the concept of paper-folding, or origami, to serve as a valve between sample introduction and detection, so reducing sampling volumes and improving operation convenience. Amino-functionalized graphene (NH2-GO)/thionine (THI)/gold particle (AuNP) nanocomposites were used to modify the working electrode not only to generate the electrochemical signals, but also to provide an environment conducive to aptamer immobilization. Electrochemical characterization revealed that the formation of an insulating aptamer–antigen immunocomplex would hinder electron transfer from the sample medium to the working electrode, thus resulting in a lower signal. The experimental results showed that the proposed aptasensor exhibited a linear range from 0.05 to 200 ngmL−1 (R2 = 0.989) and a detection limit of 5 pgmL−1 for EGFR. The analytical reliability of the proposed paper-based aptasensor was further investigated by analyzing serum samples, showing good agreement with the gold-standard enzyme-linked immunosorbent assa

    Ex Situ Reconstruction-Shaped Ir/CoO/Perovskite Heterojunction for Boosted Water Oxidation Reaction

    Get PDF
    The oxygen evolution reaction (OER) is the performance-limiting step in the process of water splitting. In situ electrochemical conditioning could induce surface reconstruction of various OER electrocatalysts, forming reactive sites dynamically but at the expense of fast cation leaching. Therefore, achieving simultaneous improvement in catalytic activity and stability remains a significant challenge. Herein, we used a scalable cation deficiency-driven exsolution approach to ex situ reconstruct a homogeneous-doped cobaltate precursor into an Ir/CoO/perovskite heterojunction (SCI-350), which served as an active and stable OER electrode. The SCI-350 catalyst exhibited a low overpotential of 240 mV at 10 mA cm-2 in 1 M KOH and superior durability in practical electrolysis for over 150 h. The outstanding activity is preliminarily attributed to the exponentially enlarged electrochemical surface area for charge accumulation, increasing from 3.3 to 175.5 mF cm-2. Moreover, density functional theory calculations combined with advanced spectroscopy and 18O isotope-labeling experiments evidenced the tripled oxygen exchange kinetics, strengthened metal-oxygen hybridization, and engaged lattice oxygen oxidation for O-O coupling on SCI-350. This work presents a promising and feasible strategy for constructing highly active oxide OER electrocatalysts without sacrificing durability

    Fruit, seed and embryo development of different cassava (Manihot esculenta Crantz) genotypes and embryo rescue

    Get PDF
    Fruit, seed and embryo developments of different cassava (Manihot esculenta Crantz) genotypes, as well as embryo rescue, were investigated. The fruits of three genotypes after uncontrolled open pollination presented the same progressive development with similar sizes at different stages. There are large differences in the fruit set as well as the embryo development between different genotypes. Days after pollination (DAP) was found not to be an adequate predictor of embryo size as their size ranged from almost invisible to 8.7 mm in length at 32 DAP even within the different locules of the same fruit. The ideal stage for embryo rescue in cassava was from 32 to 36 DAP, because at that stage most embryos are visible (&gt; 0.7 mm); and their excision without injury is feasible. Also, in vitro germination of the cotyledonary embryos at that stage had a high success rate. A half Murashige and Skoog (MS) medium supplemented with 1.0 mg/l GA3, 2% sucrose and 0.2% gel rite proved to be adequate for embryo rescue.Keywords: Manihot esculenta Crantz, day after pollination (DAP), fruit set, seed size, embryo size, embryo rescueAfrican Journal of Biotechnology, Vol 13(14), 1524-152

    Influence of Artificial Cofferdam and Spartina alterniflora Expansion on Evolution of Suaeda salsa Marsh in Yancheng Coastal Wetland of East China

    No full text
    Suaeda salsa is an important local species in the intertidal beach of the Western Pacific coast. However, under the artificial cofferdam and Spartina alterniflora expansion, Suaeda marsh has degraded seriously. Therefore, using Yancheng Nature Reserve as a case study area, taking ETM+ images in 2000, 2006 and 2011 as the basic data sources, we revealed the evolution characteristics of Salsa marsh which was impacted. The research results are as follows. From 2000 to 2011, Salsa marsh area in the artificial area tempestuously degraded, decreasing by 87.158%, more than 22% than those in the natural area. The landscape was fragmentized. Landscape polymerization degree index dropped from 95.780 to 65.455, more than 16% than those in the natural area. The mean patch area fell down to 21.429 ha from 389.333 ha, more than 11% that in the natural area. Compared to the steady change in natural conditions, the area was reduced by 118.167 ha/a from 2000 to 2006, while during 2006-2011, it was only 51.500 ha/a in artificial area. As for spatial change of landscape, in artificial area, the Salsa marsh centroid moved forward to the southeast with 666.350 m, but that in natural area moved forward to the north with 1042.710 m from 2000 to 2006. From 2006 to 2011, the centroid moved forward to east and north respectively. Artificial cofferdam transformed the area into freshwater ecosystem, and meanwhile the freshwater was beneficial to Reed marsh. During 2000 to 2006, in the artificial area, 539 ha Salsa marsh controlled by cofferdam transferred into reed marsh and aquaculture ponds, of which the transformation rate was nearly 4% higher than that in natural area. From 2006 to 2011, 178 ha Salsa marsh was transferred into reed marsh, the transformation rate was 20% higher than that in natural area. With rapid spreading and strong competition of Spartina species, the coastal wetland has formed the pattern of "Salsa–Spartina marshes". From 2000 to 2006, in artificial area, 15.24% of Salsa marsh was transferred into Spartina marsh, of which the transformation rate was 13% higher than that in natural area. And from 2006 to 2011, 30.07% Salsa marsh was replaced by the Spartina marsh in artificial area, the rate was almost 10% higher than that in the natural area
    corecore