1,241 research outputs found

    Efficacy of Functional Magnetic Stimulation in Neurogenic Bowel Dysfunction after Spinal Cord Injury

    Get PDF
    [[abstract]]Objective: The aims of this study were to assess the usefulness of functional magnetic stimulation in controlling neurogenic bowel dysfunction in spinal cord injured patients with supraconal and conal/caudal lesions, and to investigate the efficacy of this regimen with a 3-month follow-up. Design: A longitudinal, prospective before-after trial. Subjects: A total of 22 patients with chronic spinal cord injured and intractable neurogenic bowel dysfunction. They were divided into group 1 (supraconal lesion) and group 2 (conal/caudal lesion). Methods: The colonic transit time assessment and Knowles-Eccersley-Scott Symptom Questionnaire were carried out for each patient before they received a 3-week functional magnetic stimulation protocol and on the day following the treatment. Results and conclusion: Following functional magnetic stimulation, the mean colonic transit time for all patients decreased from 62.6 to 50.4 h (p < 0.001). The patients’ Knowles-Eccersley-Scott Symptom scores decreased from 24.5 to 19.2 points (p < 0.001). The colonic transit time decrement in both group 1 (p = 0.003) and group 2 (p = 0.043) showed significant differences, as did the Knowles-Eccersley-Scott Symptom score in both groups following stimulation and in the 3-month follow-up results (p < 0.01). The improvements in bowel function indicate that functional magnetic stimulation, featuring broad-spectrum application, can be incorporated successfully into other therapies as an optimal adjuvant treatment for neurogenic bowel dysfunction resulting from spinal cord injury.[[journaltype]]國外[[incitationindex]]SCI[[booktype]]紙本[[countrycodes]]SW

    Moyamoya disease in Hong Kong: natural history and surgical revascularization outcome

    Get PDF
    Free Paper 3Theme: Brain Attack: A New EraOBJECTIVE: Moya-moya disease (MMD) is an occlusive cerebral vasculopathy associated with high risk of recurrent ischemic and hemorrhagic events. Surgical revascularization had proven benefits in ischemic MMD but the role in hemorrhagic presentations is less clear. We studied the natural history of symptomatic MMD patients in Hong Kong and compared the long term ...postprin

    Ferromagnetic Quantum Critical Point in CePd2_2P2_2 with Pd \rightarrow Ni Substitution

    Get PDF
    An investigation of the structural, thermodynamic, and electronic transport properties of the isoelectronic chemical substitution series Ce(Pd1x_{1-x}Nix_x)2_2P2_2 is reported, where a possible ferromagnetic quantum critical point is uncovered in the temperature - concentration (TxT-x) phase diagram. This behavior results from the simultaneous contraction of the unit cell volume, which tunes the relative strengths of the Kondo and RKKY interactions, and the introduction of disorder through alloying. Near the critical region at xcrx_{\rm{cr}} \approx 0.7, the rate of contraction of the unit cell volume strengthens, indicating that the cerium ff-valence crosses over from trivalent to a non-integer value. Consistent with this picture, x-ray absorption spectroscopy measurements reveal that while CePd2_2P2_2 has a purely trivalent cerium ff-state, CeNi2_2P2_2 has a small (<< 10 \%) tetravalent contribution. In a broad region around xcrx_{\rm{cr}}, there is a breakdown of Fermi liquid temperature dependences, signaling the influence of quantum critical fluctuations and disorder effects. Measurements of clean CePd2_2P2_2 furthermore show that applied pressure has a similar initial effect to alloying on the ferromagnetic order. From these results, CePd2_2P2_2 emerges as a keystone system to test theories such as the Belitz-Kirkpatrick-Vojta model for ferromagnetic quantum criticality, where distinct behaviors are expected in the dirty and clean limits.Comment: 9 pages, 8 figure

    Increased vasculogenesis of endothelial cells in hyaluronic acid augmented fibrin-based natural hydrogels – from in vitro to in vivo models

    Get PDF
    Vascularisation efficiency plays an essential role in the success of bulk transplantation, while biocompatibility and safety are major concerns in clinical applications. Fibrin-based hydrogels have been exploited as scaffolds for their advantages in biocompatibility, degradability and mass transportation in various forms. However, the mechanical strength and degree of vascularisation remain unsatisfactory for clinical usage. An interpenetrating hydrogel was developed by adding hyaluronic acid (HA) to a fibrin-based natural hydrogel. The vasculogenesis of endothelial cells (human umbilical vein endothelial cells, HUVECs) was characterised within the gel using both in vitro and in vivo animal studies. The in vitro vascular morphology analysis showed 17.9 % longer mean tube length and 14.3 % higher average thickness in 7 d cultivation within the HA-supplemented hydrogel. The in vivo results showed 51.6 % larger total tube area, 1.8 × longer average tube length and 81.6 % higher cell number in the HA-supplemented hydrogel compared to the hydrogel without HA. The experimental results demonstrated better vascularisation and cell recruitment in the HA- supplemented hydrogel. The material properties of the hydrogels were also analysed using atomic force microscopy (AFM). The results revealed 3.7 × higher elasticity of the HA-supplemented hydrogel, which provided better mechanical strength and support for easy handling during procedures. With the demonstrated advantages, the developed hydrogels showed promise for exploitation in various practical clinical applications

    Guest editorial: COVID-19 pandemic and health informatics part 3

    Get PDF
    This is the author accepted manuscript. The final version is available from Emerald via the DOI in this recordAfter more than three years, we start to see the end of the tunnel of the COVID-19 pandemic and are ready for reopening (Abbass et al., 2022; Suh and Alhaery, 2022; Kumar et al., 2021). Here, the guest editors and co-editors would like to wish all of our readers and authors good health and let us walk through the pandemic together. We continue to present part 3 of our special issue on the COVID-19 Pandemic and Health Informatics in this issue. In the past two parts (Huang et al., 2021, 2022), we presented 28 papers; in this issue, we present the following 14 papers on three aspects of research

    4β-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The crude extract of the fruit bearing plant, <it>Physalis peruviana </it>(golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown.</p> <p>Methods</p> <p>Herein, we isolated the main pure compound, 4β-Hydroxywithanolide (4βHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE) assay was used to evaluate the DNA damage due to the drug.</p> <p>Results</p> <p>It was shown that DNA damage was significantly induced by 1, 5, and 10 μg/mL 4βHWE for 2 h in a dose-dependent manner (<it>p </it>< 0.005). A trypan blue exclusion assay showed that the proliferation of cells was inhibited by 4βHWE in both dose- and time-dependent manners (<it>p </it>< 0.05 and 0.001 for 24 and 48 h, respectively). The half maximal inhibitory concentrations (IC<sub>50</sub>) of 4βHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 μg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4βHWE produced cell cycle perturbation in the form of sub-G<sub>1 </sub>accumulation and slight arrest at the G<sub>2</sub>/M phase with 1 μg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G<sub>2</sub>/M arrest for H1299 cells treated with 5 μg/mL for 24 h.</p> <p>Conclusions</p> <p>In this study, we demonstrated that golden berry-derived 4βHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer.</p

    Janus monolayers of transition metal dichalcogenides.

    Get PDF
    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements

    Laser decoating of DLC films for tribological applications

    Get PDF
    Damaged DLC coatings usually require remanufacturing of the entire coated components starting from an industrial chemical de-coating step. Alternatively, a complete or local coating repair can be considered. To pursue this approach, however, a local coating removal is needed as first operation. In this context, controlled decoating based on laser sources can be a suitable and clean alternative to achieve a pre-fixed decoating depth with high accuracy. In the present study, we investigated a laser-based decoating process executed on multilayered DLC films for advanced tribological applications (deposited via a hybrid PVD/PE-CVD technique). The results were acquired via multifocal optical digital microscopy (MF-ODM), which allowed high-resolution 3D surface reconstruction as well as digital profilometry of the lasered and unlasered surface. The study identifies the most critical process parameters which influence the effective decoating depth and the post-decoating surface roughness. In particular, the role of pulse overlap (decomposed along orthogonal directions), laser fluence, number of lasing passes and assist gas is discussed in text. A first experimental campaign was designed to identify the best conditions to obtain full decoating of the DLC + DLC:Cr layers. It was observed that decreasing the marking speed to 200 mm/s was necessary to obtain a sufficient pulse overlap and a nearly planar ablation profile. By operating with microsecond pulses and 1 J/cm2 (fairly above the ablation threshold), less than 10 passes were needed to obtain full decoating of the lasered area with an etching rate of 1.1 μm/loop. Further experiments were then executed in order to minimise the roughness of the rest surface with the best value found at around 0.2 μm. Limited oxidation but higher Ra values were observed in Ar atmosphere
    corecore