582 research outputs found

    Genome-Wide Linkage Mapping of QTL for Yield Components, Plant Height and Yield-Related Physiological Traits in the Chinese Wheat Cross Zhou 8425B/Chinese Spring

    Get PDF
    Identification of genes for yield components, plant height (PH), and yield-related physiological traits and tightly linked molecular markers is of great importance in marker-assisted selection (MAS) in wheat breeding. In the present study, 246 F(8) RILs derived from the cross of Zhou 8425B/Chinese Spring were genotyped using the high-density Illumina iSelect 90K single nucleotide polymorphism (SNP) assay. Field trials were conducted at Zhengzhou and Zhoukou of Henan Province, during the 2012–2013 and 2013–2014 cropping season under irrigated conditions, providing data for four environments. Analysis of variance (ANOVA) of agronomic and physiological traits revealed significant differences (P < 0.01) among RILs, environments, and RILs × environments interactions. Broad-sense heritabilities of all traits including thousand kernel weight (TKW), PH, spike length (SL), kernel number per spike (KNS), spike number/m(2) (SN), normalized difference in vegetation index at anthesis (NDVI-A) and at 10 days post-anthesis (NDVI-10), SPAD value of chlorophyll content at anthesis (Chl-A) and at 10 days post-anthesis (Chl-10) ranged between 0.65 and 0.94. A linkage map spanning 3609.4 cM was constructed using 5636 polymorphic SNP markers, with an average chromosome length of 171.9 cM and marker density of 0.64 cM/marker. A total of 866 SNP markers were newly mapped to the hexaploid wheat linkage map. Eighty-six QTL for yield components, PH, and yield-related physiological traits were detected on 18 chromosomes except 1D, 5D, and 6D, explaining 2.3–33.2% of the phenotypic variance. Ten stable QTL were identified across four environments, viz. QTKW.caas-6A.1, QTKW.caas-7AL, QKNS.caas-4AL, QSN.caas-1AL.1, QPH.caas-4BS.2, QPH.caas-4DS.1, QSL.caas-4AS, QSL.caas-4AL.1, QChl-A.caas-5AL, and QChl-10.caas-5BL. Meanwhile, 10 QTL-rich regions were found on chromosome 1BS, 2AL (2), 3AL, 4AL (2), 4BS, 4DS, 5BL, and 7AL exhibiting pleiotropic effects. These QTL or QTL clusters are tightly linked to SNP markers, with genetic distances to the closest SNPs ranging from 0 to 1.5 cM, and could serve as target regions for fine mapping, candidate gene discovery, and MAS in wheat breeding

    How Does Information Sharing of a Supervisor Influence Proactive Change Behavior of an Employee? The Chain Mediating Role of Family-Like Employee–Organization Relationship and Relationship Energy

    Get PDF
    The proactive change behavior of an employee is the key to promoting organizational innovation. However, the proactive change has a certain risk, and many employees are unwilling to implement initiatively. How to promote the occurrence of a proactive change behavior of an employee has become a hot issue in the theoretical and practical areas. Based on the self-disclosure theory, this study uses the questionnaire survey method, containing a total of 32 items, and uses the 5-point Likert scale (1 = strongly disagree and 5 = strongly agree), with the Mplus and SPSS statistical software to analyze the impact mechanism of work-related information sharing of supervisors on the proactive change behavior of employees through the structural equation model. The regulatory effect of non-work information sharing of leaders is analyzed using the latent regulatory structural equation method. The conclusions are as follows: work-related information sharing positively of supervisors influences the family-like employee–organization relationship of employees; the family-like employee–organization relationship and relationship energy play serial mediating roles in the relationship between work-related information sharing of supervisors and the proactive change behavior of employees; non-work information sharing of supervisors moderates the serial mediating path by enhancing the positive influence of work-related information sharing of supervisors on the family-like employee–organization relationship. Theoretically, this study has complemented and enriched the research on the influence mechanism between the information sharing of supervisors and the proactive change behavior of employees. Practically, this study has important implications for supervisors to promote the proactive change behavior of employees by sharing work-related information and non-work information with employees

    Choline Supplementation and DNA Methylation in the Hippocampus and Prefrontal Cortex of Rats Exposed to Alcohol During Development

    Get PDF
    BACKGROUND: Some of the most frequent deficits seen in children with fetal alcohol spectrum disorders (FASD) and in animal models of FASD are spatial memory impairments and impaired executive functioning, which are likely related to alcohol-induced alterations of the hippocampus and prefrontal cortex (PFC), respectively. Choline, a nutrient supplement, has been shown in a rat model to ameliorate some of alcohol\u27s teratogenic effects, and this effect may be mediated through choline\u27s effects on DNA methylation. METHODS: Alcohol was given by intragastric intubation to rat pups during the neonatal period (postnatal days 2 to 10) (ET group), which is equivalent to the third trimester in humans and a period of heightened vulnerability of the brain to alcohol exposure. Control groups included an intubated control group given the intubation procedure without alcohol (IC) and a nontreated control group (NC). Choline or saline was administered subcutaneously to each subject from postnatal days 2 to 20. On postnatal day 21, the brains of the subjects were removed and assayed for global DNA methylation patterning as measured by chemiluminescence using the cpGlobal assay in both the hippocampal region and PFC. RESULTS: Alcohol exposure caused hypermethylation in the hippocampus and PFC, which was significantly reduced after choline supplementation. In contrast, control animals showed increases in DNA methylation in both regions after choline supplementation, suggesting that choline supplementation has different effects depending upon the initial state of the brain. CONCLUSIONS: This study is the first to show changes in global DNA methylation of the hippocampal region and PFC after neonatal alcohol exposure. Choline supplementation impacts global DNA methylation in these 2 brain regions in alcohol-exposed and control animals in a differential manner. The current findings suggest that both alcohol and choline have substantial impact on the epigenome in the PFC and hippocampus, and future studies will be needed to describe which gene families are impacted in such a way that function of the nervous system is changed

    Nanoscale probing of electron-regulated structural transitions in silk proteins by near-field IR imaging and nano-spectroscopy

    Get PDF
    Silk protein fibres produced by silkworms and spiders are renowned for their unparalleled mechanical strength and extensibility arising from their high-β-sheet crystal contents as natural materials. Investigation of β-sheet-oriented conformational transitions in silk proteins at the nanoscale remains a challenge using conventional imaging techniques given their limitations in chemical sensitivity or limited spatial resolution. Here, we report on electron-regulated nanoscale polymorphic transitions in silk proteins revealed by near-field infrared imaging and nano-spectroscopy at resolutions approaching the molecular level. The ability to locally probe nanoscale protein structural transitions combined with nanometre-precision electron-beam lithography offers us the capability to finely control the structure of silk proteins in two and three dimensions. Our work paves the way for unlocking essential nanoscopic protein structures and critical conditions for electron-induced conformational transitions, offering new rules to design protein-based nanoarchitectures.National Science Foundation (U.S.) (1563422)National Science Foundation (U.S.) (1562915

    ZeroQuant(4+2): Redefining LLMs Quantization with a New FP6-Centric Strategy for Diverse Generative Tasks

    Full text link
    This study examines 4-bit quantization methods like GPTQ in large language models (LLMs), highlighting GPTQ's overfitting and limited enhancement in Zero-Shot tasks. While prior works merely focusing on zero-shot measurement, we extend task scope to more generative categories such as code generation and abstractive summarization, in which we found that INT4 quantization can significantly underperform. However, simply shifting to higher precision formats like FP6 has been particularly challenging, thus overlooked, due to poor performance caused by the lack of sophisticated integration and system acceleration strategies on current AI hardware. Our results show that FP6, even with a coarse-grain quantization scheme, performs robustly across various algorithms and tasks, demonstrating its superiority in accuracy and versatility. Notably, with the FP6 quantization, \codestar-15B model performs comparably to its FP16 counterpart in code generation, and for smaller models like the 406M it closely matches their baselines in summarization. Neither can be achieved by INT4. To better accommodate various AI hardware and achieve the best system performance, we propose a novel 4+2 design for FP6 to achieve similar latency to the state-of-the-art INT4 fine-grain quantization. With our design, FP6 can become a promising solution to the current 4-bit quantization methods used in LLMs

    Comparative transcriptome profiling provides insights into plant salt tolerance in seashore paspalum (\u3ci\u3ePaspalum vaginatum\u3c/i\u3e)

    Get PDF
    Background Seashore paspalum (Paspalum vaginatum), a halophytic warm-seasoned perennial grass, is tolerant of many environmental stresses, especially salt stress. To investigate molecular mechanisms underlying salinity tolerance in seashore paspalum, physiological characteristics and global transcription profiles of highly (Supreme) and moderately (Parish) salinity-tolerant cultivars under normal and salt stressed conditions were analyzed. Results Physiological characterization comparing highly (Supreme) and moderately (Parish) salinity-tolerant cultivars revealed that Supreme’s higher salinity tolerance is associated with higher Na+ and Ca2+ accumulation under normal conditions and further increase of Na+ under salt-treated conditions (400 mM NaCl), possibly by vacuolar sequestration. Moreover, K+ retention under salt treatment occurs in both cultivars, suggesting that it may be a conserved mechanism for prevention of Na+ toxicity. We sequenced the transcriptome of the two cultivars under both normal and salt-treated conditions (400 mM NaCl) using RNA-seq. De novo assembly of about 153 million high-quality reads and identification of Open Reading Frames (ORFs) uncovered a total of 82,608 non-redundant unigenes, of which 3250 genes were identified as transcription factors (TFs). Gene Ontology (GO) annotation revealed the presence of genes involved in diverse cellular processes in seashore paspalum’s transcriptome. Differential expression analysis identified a total of 828 and 2222 genes that are responsive to high salinity for Supreme and Parish, respectively. “Oxidation-reduction process” and “nucleic acid binding” are significantly enriched GOs among differentially expressed genes in both cultivars under salt treatment. Interestingly, compared to Parish, a number of salt stress induced transcription factors are enriched and show higher abundance in Supreme under normal conditions, possibly due to enhanced Ca2+ signaling transduction out of Na+ accumulation, which may be another contributor to Supreme’s higher salinity tolerance. Conclusion Physiological and transcriptome analyses of seashore paspalum reveal major molecular underpinnings contributing to plant response to salt stress in this halophytic warm-seasoned perennial grass. The data obtained provide valuable molecular resources for functional studies and developing strategies to engineer plant salinity tolerance

    Cooling performance in a minichannel heat sink with different triangular pin-fins configurations

    Get PDF
    With the continuous progress of automotive new energy technology, the motor has become an important part of the power system, and the heat dissipation of insulated-gate bipolar transistors (IGBT) determines the reliability of the power system. Minichannel structure can be added to the thermal management system of new energy vehicles to improve the heat transfer capacity. Due to the growth of the boundary layer in the smooth minichannel flow channel, the cooling performance improvement was limited. Pin-fins and rib structures were used to break the boundary layer and increased the heat transfer area to enhance the heat transfer capacity. In this study, a numerical simulation model of minichannel with triangular pin-fins with different rotation angles was established and calculated using the SST k-omega method. The temperature field, velocity field, pressure, and vortex distribution under different configurations were discussed in detail. The jet area formed by the prism wall and the side wall of the minichannel would impact the wall and reduce the growth of the boundary layer. However, the stagnation area generated in the center and corner will reduce the improvement of heat transfer capacity. The thermo-hydraulic characteristics of different configurations at different Reynolds numbers (Re), such as Nusselt number (Nu), Darcy friction resistance coefficient (f), and performance evaluation criterion (PEC), were analyzed. As Re increased, the best and worst configurations changed, the best configuration changed from the 90°–120° structure to the 120°–120° structure, and the worst configuration changed from the 75°–60° to the 60°–60° structure. When the Re = 663, the influence of the front and rear rotation angle on the cooling performance was explored. When the rotation angle was closer to 60°, the cooling performance of the minichannel was better. And the closer the rotation angle was to 120°, the cooling performance was better. This has a reference effect on the design of minichannel heat sinks

    Fabrication and characterization of drug-loaded nano-hydroxyapatite/polyamide 66 scaffolds modified with carbon nanotubes and silk fibroin

    Get PDF
    Nano-hydroxyapatite/polyamide 66 (nHA/PA66) porous scaffolds were fabricated by a phase inversion method. Carbon nanotubes (CNTs) and silk fibroin (SF) were used to modify the surface of the nHA/PA66 scaffolds by freeze-drying and cross-linking. Dexamethasone was absorbed to the CNTs to promote the osteogenic differentiation of bone mesenchymal stem cells (BMSCs). The cell viability of BMSCs was investigated by changing the concentration of the CNT dispersion, and the most biocompatible scaffold was selected. In addition, the morphology and mechanical property of the scaffolds were investigated. The results showed that the nHA/PA66 scaffolds modified with CNTs and SF met the requirements of bone tissue engineering scaffolds. The dexamethasone-loaded CNT/SF-nHA/PA66 composite scaffold promoted the osteogenic differentiation of BMSCs, and the drug-loaded scaffolds are expected to function as effective bone tissue engineering scaffolds

    Long-term exposure to ambient NO2 increase oral cancer prevalence in Southern China: a 3-year time-series analysis

    Get PDF
    BackgroundWhile the correlation between cancer and air pollutants is well-established, research on the delayed effects of NO2 on oral cancer remains limited.MethodsWe collected data on nitrogen dioxide (NO2) along with diagnosed cases of oral cancer in Guangxi, China, and analyzed the correlation between exposure to NO2 and the prevalence of oral cancer.ResultsThe study included 1,841 participants diagnosed with oral malignancies, consisting of 1,179 males (64.0%) and 662 females (36.0%), with a mean age of 55.9 ± 14.0 years. The NO2 concentration is 20.2 ± 10.4 μg/m3. The highest cumulative effects of NO2 exposure were observed at a 3-year cumulative lag, with a relative risk (RR) of 1.115 (95% CI: 1.102–1.128). For males, the most pronounced effect of NO2 also occurred at a 3-year lag (RR = 1.110, 95% CI: 1.094–1.127). Similarly, among females, the significant cumulative impact of NO2 was found at a 3-year lag (RR = 1.123, 95% CI: 1.101–1.145). For individuals under 60 years of age, the cumulative impact of NO2 peaked at the same 3-year lag (RR = 1.102, 95% CI: 1.085–1.120). For individuals aged 60 and above, the highest cumulative impact of NO2 was also detected at a 3-year lag (RR = 1.132, 95% CI: 1.112–1.152). For the group with normal BMI, the highest cumulative effect of NO2 exposure was also observed at the 3-year lag period (RR = 1.289, 95% CI: 1.217–1.365), consistent with the findings for other groups.ConclusionThese findings suggest a significant lagged effect of long-term NO2 exposure on oral cancer, with varying associations between NO2 and oral cancer across different ages and genders
    corecore