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Nanoscale probing of electron-regulated structural
transitions in silk proteins by near-field IR imaging
and nano-spectroscopy
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Silk protein fibres produced by silkworms and spiders are renowned for their unparalleled

mechanical strength and extensibility arising from their high-b-sheet crystal contents as

natural materials. Investigation of b-sheet-oriented conformational transitions in silk proteins

at the nanoscale remains a challenge using conventional imaging techniques given their

limitations in chemical sensitivity or limited spatial resolution. Here, we report on electron-

regulated nanoscale polymorphic transitions in silk proteins revealed by near-field infrared

imaging and nano-spectroscopy at resolutions approaching the molecular level. The ability to

locally probe nanoscale protein structural transitions combined with nanometre-precision

electron-beam lithography offers us the capability to finely control the structure of silk

proteins in two and three dimensions. Our work paves the way for unlocking essential

nanoscopic protein structures and critical conditions for electron-induced conformational

transitions, offering new rules to design protein-based nanoarchitectures.
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P
roteins, the elementary building blocks of biological
materials, possess many unique properties that are of
fundamental importance to modern technology. Recent

developments in nanotechnology have led to renewed interest
and breakthroughs using biopolymers, specifically natural
proteins, as novel functional materials1–3. In this context, silk
has been heavily investigated because of its superior native
mechanical properties (strength and toughness)4. In addition,
silk-based biomaterials have a number of intriguing properties,
such as outstanding biocompatibility and biodegradability5,
controllable water-solubility6 and degradation rate7. These
compelling traits arise from the hierarchical structures of well-
organized b-sheet nanocrystals arranged in a semi-amorphous
protein matrix8, enabling many important silk-based biomedical
applications including, but not limited to, drug release9,
degradable implants10, tissue engineering11 and regenerative
medicine5. Therefore, understanding the mechanisms that
underpin b-sheet formation and deformation as well as
formulation of strategies to control inter- and intramolecular
bonds within silk protein matrices is paramount for the control of
protein structures and the improvement of material
properties12,13. For example, silk was used either as a positive
or negative electron-beam lithography (EBL) resist through
interactions with electron beams given its polymorphic
crystalline structure14. Different processing/preparation of silk
proteins was required for use in positive or negative tone
(for example, crystalline silk as positive resist and amorphous silk
as negative resist). The inelastic collision of electrons with
crystalline silk results in the formation of short polypeptides,
which are water-soluble. While in negative EBL, using silk
proteins where water radiolysis dominates, high electron beam
doses are usually needed to form the intermolecular crosslinks to
make the proteins water-insoluble.

Understanding the hierarchical formation of protein structures
at their fundamental length scales will help to recognize essential
nanoscopic protein structures and critical conditions for
conformational transitions, which in turn provides insight into
refined protein nanostructuring. However, conventional high-
performance imaging techniques to characterize and recapitulate
silk structure–function relationships at the nanoscale present
challenges given their limitations in chemical sensitivity (for
example, electron microscopy and atomic force microscopy
(AFM)) or limited spatial resolution (for example, ‘far-field’
infrared (IR) spectroscopy). Characterization of conformational
changes in proteins can be carried out using IR scanning
near-field optical microscopy (IR-SNOM). SNOM has been
previously applied in the identification of spectroscopic signatures
in a variety of solid state and polymer samples, including direct
imaging of plasmon propagation on graphene15, nanoscale-
mapping of phase transitions in correlated electron materials16,
chemical identification of mineral polymorphs17 and secondary
structure analysis of single-protein complexes18. Two types of
SNOMs are widely used for protein study at the nanoscale: one
for near-field imaging (that is, scattering-type SNOM, referred to
hereafter as s-SNOM) and another for nano-spectroscopic studies
(that is, thermal-expansion-based SNOM, referred to as
AFM–IR), respectively. Built on an AFM, s-SNOM provides
direct imaging and chemical identification of proteins with spatial
resolution of B10 nm, significantly enhancing the ability to probe
local chemical composites19. In comparison, with AFM–IR nano-
spectroscopy, IR absorption causes a rapid local thermal
expansion that excites resonant oscillations of the AFM
cantilever, yielding frequency-dependent IR absorption spectra.
Each absorption peak corresponds to a specific molecular
resonance of the protein, providing a unique chemical
fingerprint at the nanoscale20.

Here, we show electron-induced nanoscale structural
transitions in silk proteins revealed by near-field IR imaging
and nano-spectroscopy at resolutions approaching the molecular
level. This work builds on the ability to reshape silk with energetic
electrons and on the application of advanced spectroscopic
imaging for nanoscale structural analysis and mapping.
We directly visualize a complete structural transition (that is
the formation, deformation, reformation, decomposition and
carbonization) of b-sheet nanocrystals in silk protein thin films,
controlled by EBL, unveiling an exciting route for high-level
protein-based two-dimensional (2D) and three-dimensional (3D)
nanofabrication and engineering.

Results
Silk proteins as dual-tone bio-resist in EBL. We report here that
either amorphous or crystalline silk (or intermediate conforma-
tional states) can be used in both positive and negative tones. The
applied electron dosage is the primary tuning parameter and
plays a more important role than the crystallinity of the starting
materials (Supplementary Fig. 1). For example, positive and
negative EBL were simultaneously achieved on the same
crystalline silk protein substrate as the starting material under-
going an identical water-based resist development process
(Fig. 1a,b). The control of polymorphic transitions in silk proteins
allows us to explore a complete structural transition of b-sheet
nanocrystals regulated by precise delivery of electron energies at
the nanoscale (Fig. 1c).

Nano-spectroscopic imaging of silk proteins using s-SNOM. In
this work, SNOM has been utilized to overcome the diffraction
limits of conventional optics and register nanoscale spectroscopic
signatures of silk in the IR frequencies. To obtain high-resolution
optical images and spectroscopic information to map out the
nano-chemical and nano-mechanical properties of silk proteins at
the molecular level, an s-SNOM (NeaSNOM, Neaspec GmbH,
Germany) is coupled to a tunable IR quantum cascade laser
(QCL, Daylight Solutions Inc., USA) covering the broad IR
spectra of the amide I and II bands over the range from 1,495 to
1,790 cm� 1 (Fig. 1d). The near-field phase spectrum resembles
the molecular absorbance band, while the near-field amplitude
spectrum acquires a dispersive line shape similar to a far-field
reflectivity spectrum21. Figure 1e shows a topographic image of
regenerated silk protein aggregates with high b-sheet contents,
with sizes ranging from B10–350 nm, spin-coated on a silicon
substrate (also see Supplementary Figs 2 and 3). Figure 1f,g show
near-field IR phase images taken at 1,631 and 1,710 cm� 1,
respectively. All IR nano-imaging was performed at a spatial
resolution of B10 nm approaching the molecular limit of silk
proteins; for example, a Bombyx mori silk fibroin (B7.8 nm)—as
a model protein investigated in this work—consists of one light
chain (B2.4 nm) and one heavy chain (B4.2 nm) linked by a
disulfide bridge22. At 1,631 cm� 1, the phase image exhibits a
strong contrast between silk and silicon (silicon is used as the
reference for IR imaging) owing to the amide I absorption
corresponding to the secondary structure of b-sheets23. This
phase contrast vanishes when the illumination is tuned to
1,710 cm� 1 where silk proteins show little absorption. Local IR
absorption spectrum (symbols) depicting the normalized near-
field phase signal of crystalline silk (that is, b-sheet rich) was
acquired using IR nano-imaging by sweeping the probing
wavenumber/wavelength during nano-spectroscopic imaging
(Fig. 1h). Non-invasive chemical and mechanical mapping of
materials with nanometre scale resolutions is an ultimate goal in
modern chemistry and material sciences: SNOM provides
accurate nanoscale analysis of biomaterials (silk proteins in
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our case) at ambient conditions without the need of special
sample preparation or causing significant structural changes—if
any—during measurements (Supplementary Fig. 4).

Nano-imaging of structural transitions in silk proteins. To
explore the nanoscale conformational transition of silk proteins
(with emphasis on the secondary structure of b-sheets), we pre-
pared a set of silk fibroin samples on silicon substrates using EBL
which offers the highest lithographic resolution at the nanoscale.
A set of thin silk films with a thickness of B150 nm were
spin-coated and crosslinked using methanol for crystallization
(that is, the formation of b-sheets from random coils)24.
A reference substrate (for example, silicon or gold) with a flat
IR response is typically needed in s-SNOM measurements25.
A two-step EBL was therefore applied (1) to create a silicon
pattern of ‘University of Texas at Austin (UT)’ in the first step
EBL after a water development; and (2) to expose a silk pattern on
a square-shaped, carved out ‘UT’ region of the substrate,
irradiated with different dosages of electrons in the second step
EBL, for electron-induced conformational transition
characterization (Fig. 2a). The ‘UT’-shaped silicon substrate
served as an IR reference and facilitated both topographic
characterization and more importantly IR nano-imaging.
Multiple samples were prepared to elucidate the fundamental
structural variations of silk samples by systematic exposures of
silk samples to different doses of electron-beam radiation.
Notable differences have been found in terms of the sharpness

(Supplementary Fig. 5) and thickness (Fig. 2b) of as-fabricated
silk nanostructures that underwent the radiolysis and pyrolysis
processes—dominant at low and high dosages—respectively.

Figure 2c illustrates the IR nano-imaging of the formation
(induced by chemical treatment using methanol9), deformation,
reformation, decomposition, and carbonization (all induced by
electron radiation) of b-sheet contents in silk nanostructures
using s-SNOM. The first column shows the topographic images.
Both sets of IR phase images—which were normalized to the
silicon substrate—of silk nanostructures taken at 1,600 cm� 1

(column 2) and 1,710 cm� 1 (column 5) show weak contrast
between silk and silicon, indicating an off-resonant response of
the amide I bands. At the dosage of 0 mC cm� 2 (no electron
irradiance), the phase image taken shows a strong contrast at
1,631 cm� 1 for b-sheets (column 3), which is much higher than
the contrast in the image taken at 1,648 cm� 1 for random coils
(column 4, characteristic peak for amorphous silk, Supplementary
Fig. 6), indicating a dominant b-sheet existence in crystalline silk.
The difference in the phase contrast between images taken
at 1,631 and 1,648 cm� 1 slightly decreases at the dosage of
130 mC cm� 2, indicating the partial deformation of the b-sheets
(which transformed to unordered amorphous silk) in crystalline
silk. When the dosage is increased to 500 mC cm� 2, the image
taken at 1,648 cm� 1 shows a noticeably higher contrast than the
one taken at 1,631 cm� 1, opposite to the case of 0 mC cm� 2

dosage, suggesting a typical organization of the unordered
amorphous protein from a more complete deformation of
b-sheets. With increasing electron beam dosage to 1,500mC cm� 2
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Figure 1 | Electron-regulated nanoscale structural transitions in silk proteins. (a) Silk proteins as dual-tone bio-resist in EBL. (b) SEM images of

nanopatterned crystalline silk as positive or negative resist on the same substrate (due to different structural transitions) depending on ebeam dosages.

Scale bar, 5 mm. (c) Schematic illustration of b-sheet-oriented structural transitions regulated by electron energies. (d) Schematics of nanoscale

IR spectroscopic imaging using scattering-type SNOM (s-SNOM). (e) Topography of silk nano-aggregates (b-sheet rich) on a silicon substrate.

(f,g) Near-field IR phase images at 1,631 and 1,710 cm� 1, respectively. (h) Local IR absorption spectra (symbols) depicting the normalized near-field phase

signal of crystalline silk by sweeping the output wavenumber of the QCL and using IR nano-spectroscopic imaging.
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the phase images taken at 1,631 cm� 1 show a marginally higher
(but comparable) contrast to 1,648 cm� 1, which is believed to be
due to a partial reformation of b-sheets from unordered silk
polypeptides (that is, re-crystallizing). Partial recrystallization has
been observed in previously reported work using chemical26,27 or
thermal treatments28.

At the dosage of 8,000 mC cm� 2, no substantial contrast was
found in the phase images at the four frequencies. This is
attributed to the decomposition of b-sheets along with a partial
formation of carbonaceous pyroprotein after excessive electron
irradiance treatment of b-sheet nanostructures, as indicated by
the increased IR reflectivity of a more developed carbon structure
at higher dosages (Supplementary Fig. 7). These results are
similar to the previously reported macroscale carbonization of
b-sheet-rich silk protein by heat29,30. This finding offers a
potential method for direct formation of nanopatterned carbon
structures using polymer based materials31 by controlling the
protein thickness and electron beam dosage.

Nano-spectroscopy of structural transitions in silk proteins. To
quantitatively confirm the conformational transition and acquire
unambiguous structural identification of each stage, we per-
formed an IR nano-spectroscopy study of the electron-induced
structural transitions of silk proteins using AFM–IR with a spatial
resolution of B20 nm (Anasys Instruments, USA)32. IR pulses
emitted by an IR QCL (Daylight Solutions Inc., USA; output
range: 1,460–1,780 cm� 1, swept by a step size of 1 cm� 1) were
used as the near-field source to illuminate the sample, causing a
rapid thermal expansion of silk nanostructures corresponding to
the absorption fingerprints (Fig. 3a). The AFM–IR spectra on

amorphous and crystalline silk thin films are consistent with the
conventional bulk Fourier transform infrared spectroscopy
(FTIR) spectra (Fig. 3b,c). However, AFM–IR offers an
important advancement (B1,000� improvement in the spatial
resolution) as compared with previously reported work using
conventional IR techniques28, which average the structural
information over relatively large areas (that is, a few microns to
a few dozen microns using FTIR-microscopy) on silk materials
with high structural heterogeneity at the nanoscale (Fig. 3d,e).
Crystalline silk shows a maximum absorption at B1,625 cm� 1

(b-sheets) with two shoulder peaks at B1,645 cm� 1 (random
coils) and B1,660 cm� 1 (a-helices), in good agreement with the
frequency ranges corresponding to vibrational bands in b-sheet-
rich B. mori silk within the amide I region of the spectrum33.
Note that the resonance peak may differ within 10 cm� 1 in
s-SNOM and AFM–IR, as has been previously observed in
s-SNOM spectra when compared to far-field IR and thermal-
expansion-based AFM–IR spectroscopies as a result of tip-sample
coupling34 and the spectral phase approximation35.

As shown in Fig. 3f, the characteristic peak intensity of the
b-sheet formation at B1,625 cm� 1 decreased as the dosage
increases from 0 to 500mC cm� 2, indicating the continuing
deformation of the b-sheet content and a slight increase of
a-helix regions. After increasing the dosage to 1,500 mC cm� 2,
a resurgence of the absorption intensity correlated to the b-sheet
formation at B 1,625 cm� 1 was present, which was noticeably
lower than the original peak in crystalline silk, indicating
partial reformation of b-sheets. The AFM–IR spectra of silk
nanostructures under excessive electron dosage revealed that the
characteristic peaks for b-sheet crystal structure were gradually
weakened and broadened as the dosage increased from 1,500 to
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Figure 2 | Direct visualization of electron-directed structural transitions of b-sheets using near-field IR nano-imaging. (a) Illustration of a two-step EBL

process for sample preparation. First, an area of 3� 3 mm (in the shape of a ‘UT’ logo, line width: 200 nm) was patterned using EBL followed by a water

development, which provided a clear contrast between silk and silicon and facilitated the following spectroscopic imaging/characterization. Then, a second

step of electron irradiation was used to induce localized structural transitions in silk (5� 5 mm squares) by delivering ebeams at various dosages.

(b) AFM topographic images of silk nanopatterns fabricated using EBL at the dosages ranging from 0 to 8,000mC cm� 2. (c) IR nano-imaging using

s-SNOM: the phase contrast between silk and silicon (a flat spectral response in the mid-IR) in each IR image correlates to the absorption of silk proteins

(that is, the surrounding area of ‘UT’ logos) of various structures at that wavenumber, and the comparison of contrast differences between the IR images

(for instance, those in column 3 and column 4) implies the dominant protein structure within the amide I vibration bands (for example, 1,631 cm� 1

for b-sheets and 1,648 cm� 1 for random coils).
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6,000 mC cm� 2 and disappeared following an electron irradiance
at 8,000 mC cm� 2, indicating that the b-sheet crystals were
progressively decomposed and carbonized at high dosages
(Supplementary Fig. 8). The changes in the characteristic peaks
of the silk proteins indicates a more significant decrease in the
fraction of amorphous regions relative to the b-sheet regions.
A detailed deconvolution of the amide I band was conducted
(Supplementary Fig. 9) and the secondary structure content of
each stage was quantified (Table 1). In addition, we observed a
noticeable difference in the structural integrity of silk proteins
after electron irradiation. The crystalline and decomposed
(partially carbonized) silks show considerably better pattern
fidelity (namely higher sharpness, column one in Fig. 2c), which
we hypothesize to be partially due to their highly ordered
structures29 and applicable stray exposure (that is, proximity
effects) caused by the backscattered electrons through the exposed
silicon substrate (Supplementary Figs 10–14).

Electron–structure interactions in silk proteins. The ability to
structurally characterize the material allows us to conduct a com-
prehensive evaluation of silk proteins for 3D nanostructuring. We
found that there is a significant difference in the kinetics of protein–
electron interactions between amorphous silk (random coil domi-
nated) and crystalline silk (b-sheet dominated) (Fig. 4). In this report,
we demonstrate fabrication of 3D silk nanostructures by in situ
altering conformational structures of proteins using EBL with two
different but complementary methods, namely electron-nanosculp-
turing (a subtractive manufacturing process, Fig. 4a–d) and electron-
nanosintering (an additive manufacturing process, Fig. 4e–h). Note
that crystalline silk can be also used in electron-nanosintering but an
initial EBL exposure for b-sheet deformation is needed (Fig. 4i–l).

As revealed by near-field IR imaging and nano-spectroscopy,
the interaction between the electron beam and the silk structure
critically depends on the structural conformation on the protein
matrix and as-applied electron dosage (Supplementary Fig. 15).
For crystalline silk exposed to the electron beam, scission of the
crosslinked b-sheets tends to occur from top to bottom, resulting
in the removal of materials after a water-based development,
which is referred to as electron-nanosculpturing. In contrast, for
the amorphous silk exposed to the electron beam, crosslinking of
unordered random coils (either intrinsic or deformed from
crystalline proteins upon electron irradiations) proceeds from
bottom to top, which is referred to as electron-nanosintering.
The ability to understand basic mechanisms of electron-
induced structural transformations allows us to produce
sophisticated nanotopographies and nanostructures (Supplementary
Figs 16–19), opening up numerous opportunities including
biomimetic nanosurfaces36 and tissue engineering applications37.
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Figure 3 | Quantitative evaluation of conformational transitions in silk proteins using near-field IR nano-spectroscopy. (a) Schematics of IR

nano-spectroscopy using AFM–IR: pulses of IR radiation emitted by an IR QCL (output range: 1,460–1,780 cm� 1, swept by a step size: 1 cm� 1) were used

to illuminate the sample, causing a rapid thermal expansion of silk nanostructures due to local absorption enhancement at various stages picked by the
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improvement spatially) in distinguishing nanoscale structural heterogeneity. (f) AFM–IR spectra of electron-induced structural transitions in silk proteins.

PSD, position sensing detectors; PZT, lead zirconate titanate (Pb[ZrxTi1-x]O3); EC- QCL, external cavity quantum cascade laser.

Table 1 | Quantification of the nanoIR spectra using
deconvolution (Percentage: %).

Dosages (lC cm� 2) b-sheet Random coil a-helix b-turn Sum

0 35.20 30.50 23.50 10.80 100.00
130 29.24 28.26 20.41 11.23 89.13
500 10.74 25.52 23.36 12.47 72.09
1,500 19.10 21.05 16.26 11.07 67.48
3,000 15.20 22.64 16.58 11.38 65.81
6,000 6.56 11.05 10.44 7.59 35.65
8,000 6.34 6.98 7.26 5.08 25.66
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2D and 3D nanostructuring of silk protein films using EBL.
Several examples were fabricated as the first proof-of-principle
demonstrations (Fig. 5). While the results express some
resemblance to those by multi-photon polymerization (MPP)
technique38, our methods differ in two important aspects.

First, our fabrication is not limited by the optical diffraction
(B100 nm in advanced MPPs, estimated by Abbe’s equation) but
by the electron diffraction (o10 nm in standard EBLs, estimated
by the de Broglie equation), offering significant improvements in
achievable structuring resolutions. Second, photo initiators were
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required to enhance MPP in silk fibroin proteins38 while our
techniques deal with pure silk in an all-water-based process, better
preserving the biocompatibility of the material. Low throughput
has been the fundamental limit of EBL despite its unparalleled
lithographic resolution. For example, it took B5 and 10 min to
fabricate the grayscale Einstein image (B35� 35mm) and the
layer-by-layer (LbL) multilayer structure (B16� 16mm) shown in
Fig. 5, respectively. Nevertheless, nanoprobing of electron-beam
induced protein structural transitions using near-field
spectroscopic imaging techniques reported in this work can be
readily extended to study conformational dynamics of a variety of
proteins (for example, keratins, collagens, and spider silk
proteins40, data not shown) using other conventional
nanofabrication systems/sources (for example, ion beams and
photons, data not shown).

This comprehensive investigation of the electron-beam
induced conformal modification of silk at the nanoscale using
IR near-field optics, allows the characterization of the structural
transitions of silk proteins upon electron irradiation. A deep
understanding of the structure-property relation in protein-based
biomaterials unveils an exciting route for high-level protein-based
3D nanofabrication and engineering, opening up possibilities for
a new set of biomaterials with performance and function
unattainable with other materials.

Methods
Preparation of silk fibroin proteins. Silk fibroin proteins were prepared using the
established purification protocols39. B. mori cocoons were boiled for 30 min in
aqueous 0.02 M Na2CO3 (Sigma-Aldrich, USA) and then rinsed for 3� 30 min in
distilled water to remove the Na2CO3 and sericin. The degummed cocoons were
allowed to dry for more than 12 h and then subsequently dissolved in 9.3 M LiBr
(Sigma-Aldrich, USA) solution at 60 �C for 4 h. The solution was dialysed for
2 days in distilled water using Slide-a-Lyzer dialysis cassettes (MWCO 3,500,
Pierce, USA). The solution was centrifuged for 2� 20 min at 18,000 r.p.m. The
concentration was determined by measuring a volume of solution and the final
dried weight.

Sample preparation. The silk solution was spin-coated on silicon wafers.
Thickness can be controlled by the spin speed and the concentration of the silk
solution. In our case, 150-nm-thick silk layers were produced by spin-coating 5%
silk fibroin solution at a maximum speed of 4,000 r.p.m. for 40 s. Crosslinking (that
is, crystallization) of the film was obtained by dipping it in methanol for 5 min. An
EBL tool (Hitachi-4800) was used to expose the silk protein thin films. For most
samples shown in this work, the doses used varied from 0 to 8,000 mC cm� 2 at
25 keV with a probe current of 10 pA.

Nanoscale infrared spectroscopic imaging using s-SNOM. We utilized a
commercially available scattering-type near-field microscope (s-SNOM, Neaspec
GmbH, Germany) with a QCL IR laser (MIRCat, Daylight solutions Inc., USA) that
is tunable between 1,495 and 1,790 cm� 1. During instrument operation, the laser
was attenuated to B10 mW such that the detector yields a nominal signal of 1.5 V.
The AFM was operated in tapping mode with 65 nm tapping. Gold-coated AFM
tips with about 250 kHz resonance (Tap300G-B-G, budgetsensors.com) were used
to enhance the IR signal. The IR signal was detected simultaneously with AFM
signals. The IR signal used for analysis in this work was measured by a lock-in
amplifier at the second and third harmonics of the tapping frequency and the
pseudo heterodyne technique, which provides both reflection and absorption that
are (mostly) free of background. The image was scanned at 3.3 ms per pixel for a
500� 500 pixel sized image.

Infrared nano-spectroscopic study using AFM–IR. The IR spectrum was
acquired using an AFM–IR system (Anasys Instruments, CA, USA). It allows high
spatial and spectral resolution IR absorption measurement using a combination of
AFM and IR laser source. The AFM measures the local thermal expansion of the
sample due to the absorption of IR laser, and thereby maps material absorption as a
function of wavenumber. Topography images were scanned before the IR spectra
measurement to precisely locate the point of interest. The spectrum was acquired in
the range between 1,460 and 1,780 cm� 1, with a spectral resolution of 1 cm� 1

using multi-region laser power settings to ensure consistent signal to noise ratio.
The spectrum data was averaged by 10 repeated scans on the same spot. Also,
it was averaged by taking five measurements on adjacent spots (each with 10 scan
averaging) with the same composition. The sample data was normalized with
respect to the spectrum of silicon under the same ambient environment

(B18% humidity and room temperature). Subsequently, a simple 10-point
smoothing algorithm was performed to obtain the smooth near-field spectra.

Decomposition of the amide I band. The band decomposition was performed
with the OPUS software package (version 4.2) supplied by Bruker. As a starting
point for the curve-fitting procedure, four individual absorption bands were
proposed at 1,625, 1,645, 1,660 and 1,680 cm� 1, defining b-sheets, unordered
random coils, a-helices and b-turns structures, respectively. The curve fitting was
successfully performed based on the damped least squares optimization algorithm
(499.9%) developed by Levenberg–Marquardt and assuming Gaussian band
envelopes.

Data availability. The data that support the findings of this study are available
from the corresponding author (T.H.T., tiger.tao@austin.utexas.edu) upon request.
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