323 research outputs found

    Skyrmion Excitations in Quantum Hall Systems

    Full text link
    Using finite size calculations on the surface of a sphere we study the topological (skyrmion) excitation in quantum Hall system with spin degree of freedom at filling factors around ν=1\nu=1. In the absence of Zeeman energy, we find, in systems with one quasi-particle or one quasi-hole, the lowest energy band consists of states with L=SL=S, where LL and SS are the total orbital and spin angular momentum. These different spin states are almost degenerate in the thermodynamic limit and their symmetry-breaking ground state is the state with one skyrmion of infinite size. In the presence of Zeeman energy, the skyrmion size is determined by the interplay of the Zeeman energy and electron-electron interaction and the skyrmion shrinks to a spin texture of finite size. We have calculated the energy gap of the system at infinite wave vector limit as a function of the Zeeman energy and find there are kinks in the energy gap associated with the shrinking of the size of the skyrmion. breaking ground state is the state with one skyrmion of infinite size. In the presence of Zeeman energy, the skyrmion size is determined by the interplay of the Zeeman energy and electron-electronComment: 4 pages, 5 postscript figures available upon reques

    Exclusion Statistics of Quasiparticles in Condensed States of Composite Fermion Excitations

    Full text link
    The exclusion statistics of quasiparticles is found at any level of the hierarchy of condensed states of composite fermion excitations (for which experimental indications have recently been found). The hierarchy of condensed states of excitations in boson Jain states is introduced and the statistics of quasiparticles is found. The quantum Hall states of charged α\alpha-anyons (α\alpha -- the exclusion statistics parameter) can be described as incompressible states of (α+2p)(\alpha+2p)-anyons (2p2p -- an even number).Comment: 4 page

    Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and νp nucleosynthesis processes

    Get PDF
    © 2018 The Authors. Published by Elsevier B.V. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Using isochronous mass spectrometry at the experimental storage ring CSRe in Lanzhou, the masses of 82Zr and 84Nb were measured for the first time with an uncertainty of ∼10 keV, and the masses of 79Y, 81Zr, and 83Nb were re-determined with a higher precision. The latter are significantly less bound than their literature values. Our new and accurate masses remove the irregularities of the mass surface in this region of the nuclear chart. Our results do not support the predicted island of pronounced low α separation energies for neutron-deficient Mo and Tc isotopes, making the formation of Zr–Nb cycle in the rp-process unlikely. The new proton separation energy of 83Nb was determined to be 490(400) keV smaller than that in the Atomic Mass Evaluation 2012. This partly removes the overproduction of the p-nucleus 84Sr relative to the neutron-deficient molybdenum isotopes in the previous νp-process simulations.Peer reviewe

    Fractional Quantum Hall States of Clustered Composite Fermions

    Full text link
    The energy spectra and wavefunctions of up to 14 interacting quasielectrons (QE's) in the Laughlin nu=1/3 fractional quantum Hall (FQH) state are investigated using exact numerical diagonalization. It is shown that at sufficiently high density the QE's form pairs or larger clusters. This behavior, opposite to Laughlin correlations, invalidates the (sometimes invoked) reapplication of the composite fermion picture to the individual QE's. The series of finite-size incompressible ground states are identified at the QE filling factors nu_QE=1/2, 1/3, 2/3, corresponding to the electron fillings nu=3/8, 4/11, 5/13. The equivalent quasihole (QH) states occur at nu_QH=1/4, 1/5, 2/7, corresponding to nu=3/10, 4/13, 5/17. All these six novel FQH states were recently discovered experimentally. Detailed analysis indicates that QE or QH correlations in these states are different from those of well-known FQH electron states (e.g., Laughlin or Moore-Read states), leaving the origin of their incompressibility uncertain. Halperin's idea of Laughlin states of QP pairs is also explored, but is does not seem adequate.Comment: 14 pages, 9 figures; revision: 1 new figure, some new references, some new data, title chang

    Quasiparticle Interactions in Fractional Quantum Hall Systems: Justification of Different Hierarchy Schemes

    Full text link
    The pseudopotentials describing the interactions of quasiparticles in fractional quantum Hall (FQH) states are studied. Rules for the identification of incompressible quantum fluid ground states are found, based upon the form of the pseudopotentials. States belonging to the Jain sequence nu=n/(1+2pn), where n and p are integers, appear to be the only incompressible states in the thermodynamic limit, although other FQH hierarchy states occur for finite size systems. This explains the success of the composite Fermion picture.Comment: RevTeX, 10 pages, 7 EPS figures, submitted fo Phys.Rev.

    Measurements of the Mass and Full-Width of the ηc\eta_c Meson

    Get PDF
    In a sample of 58 million J/ψJ/\psi events collected with the BES II detector, the process J/ψγηc\psi\to\gamma\eta_c is observed in five different decay channels: γK+Kπ+π\gamma K^+K^-\pi^+\pi^-, γπ+ππ+π\gamma\pi^+\pi^-\pi^+\pi^-, γK±KS0π\gamma K^\pm K^0_S \pi^\mp (with KS0π+πK^0_S\to\pi^+\pi^-), γϕϕ\gamma \phi\phi (with ϕK+K\phi\to K^+K^-) and γppˉ\gamma p\bar{p}. From a combined fit of all five channels, we determine the mass and full-width of ηc\eta_c to be mηc=2977.5±1.0(stat.)±1.2(syst.)m_{\eta_c}=2977.5\pm1.0 ({stat.})\pm1.2 ({syst.}) MeV/c2c^2 and Γηc=17.0±3.7(stat.)±7.4(syst.)\Gamma_{\eta_c} = 17.0\pm3.7 ({stat.})\pm7.4 ({syst.}) MeV/c2c^2.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.

    A Measurement of Psi(2S) Resonance Parameters

    Full text link
    Cross sections for e+e- to hadons, pi+pi- J/Psi, and mu+mu- have been measured in the vicinity of the Psi(2S) resonance using the BESII detector operated at the BEPC. The Psi(2S) total width; partial widths to hadrons, pi+pi- J/Psi, muons; and corresponding branching fractions have been determined to be Gamma(total)= (264+-27) keV; Gamma(hadron)= (258+-26) keV, Gamma(mu)= (2.44+-0.21) keV, and Gamma(pi+pi- J/Psi)= (85+-8.7) keV; and Br(hadron)= (97.79+-0.15)%, Br(pi+pi- J/Psi)= (32+-1.4)%, Br(mu)= (0.93+-0.08)%, respectively.Comment: 8 pages, 6 figure

    Hamiltonian Description of Composite Fermions: Magnetoexciton Dispersions

    Full text link
    A microscopic Hamiltonian theory of the FQHE, developed by Shankar and myself based on the fermionic Chern-Simons approach, has recently been quite successful in calculating gaps in Fractional Quantum Hall states, and in predicting approximate scaling relations between the gaps of different fractions. I now apply this formalism towards computing magnetoexciton dispersions (including spin-flip dispersions) in the ν=1/3\nu=1/3, 2/5, and 3/7 gapped fractions, and find approximate agreement with numerical results. I also analyse the evolution of these dispersions with increasing sample thickness, modelled by a potential soft at high momenta. New results are obtained for instabilities as a function of thickness for 2/5 and 3/7, and it is shown that the spin-polarized 2/5 state, in contrast to the spin-polarized 1/3 state, cannot be described as a simple quantum ferromagnet.Comment: 18 pages, 18 encapsulated ps figure
    corecore