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Abstract 

Reactions of a perfluorinated ligand tetrafluorophthalic acid (1,2-H2BDC-F4) with KNO3 and 

M(OAc)2 (M = Co, Mn) led to the formation of two perfluorinated metal-organic frameworks 

[CoK2(1,2-BDC-F4)2(MeOH)]n (1) and [MnK2(1,2-BDC-F4)2(DMF)]n (2), and their structures 

were characterized by elemental analyses, IR spectra, and single-crystal X-ray diffraction tech-

niques. Both complexes show similar 2-D heterometallic-organic frameworks containing unusual 

layered inorganic K–O–M connectivities. In the structures of 1 and 2, ortho fluorine atoms of 

1,2-BDC-F4 are bound to the KI ion, while the other F atoms participate in the linkage of adjacent 

coordination layers forming a 3-D supramolecular architectures via intermolecular FF interac-

tions. Variable-temperature magnetic susceptibility studies indicate that complex 1 displays weak 

antiferromagnetic effect between adjacent Co(II) ions. 

 

Keywords: Heterometallic-organic framework; Perfluorinated phthalate ligand; Crystal structure; 

Layered inorganic connectivity; Magnetic property 

_____________________________________________________________________________ 

 

1. Introduction 

Research on the discovery and synthesis of coordination polymers (CPs) or metal-organic 

frameworks (MOFs) remains an active and important area in crystal engineering, coordination 

and material chemistry due to the compounds interesting network structures and potential appli-

cations in gas storage, separation, luminescence, catalysis, and magnetism [1]. To realize their full 

potential, it is necessary to construct such crystalline materials with specific structure and func-

tionality by deliberate design with appropriate selection of organic linkers and metal-containing 

units. Although fluorine containing molecules are of particular interest as the strong elec-

tron-withdrawing effect of fluorine group contributes to extraordinary functional properties and 

numerous applications [2], fluorinated organic ligands have scarcely been explored in the aspect 
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of inorganic-organic hybrids, especially MOFs or CPs. In this regard, MOFs with fluorinated 

N-containing heterocycle ligands (such as pyridine-type [3] and triazole-type compounds [4]) 

demonstrated remarkable abilities for induced-fit enclathration of organic molecules and high hy-

drogen adsorption. Perfluorinated aromatic dicarboxylic acids, such as 

2,3,5,6-tetrafluoroterephthalic acid (1,4-H2BDC-F4) [5], 2,4,5,6-tetrafluoroisophthalic acid 

(1,3-H2BDC-F4) [6], and 3,4,5,6-tetrafluorophthalic acid (1,2-H2BDC-F4) [7], have emerged as 

ideal linkers for building fluorine-functionalized MOF materials since they have shown distinc-

tive linking modes and peculiar variations in their physical properties when compared to their 

non-fluorinated analogues.. 

We are currently engaged in the synthesis and coordination chemistry studies of perfluorinated 

dicarboxylic acid ligands under variable reaction conditions [7, 8]. In our previous work, a sol-

vent-tuning strategy utilizing 1,2-H2BDC-F4 has been successfully employed to construct two 

Cd(II) CPs [8b]. Very recently, we reported a convenient template-controlled method to prepare a 

series of isomeric water-soluble Ag(I) complexes with 1,2-BDC-F4, which show different 2-D 

layered inorganic connectivities in solid state and exceptional antibacterial activity in aqueous 

solution [7a]. As a continuation of our work in the field of alkali-metal-induced assemblies of co-

ordination polymers with perhalogenated benzenedicarboxylate derivatives [7b, 9].  We herein, 

present two perfluorinated 2-D heterometallic-organic frameworks 

[CoK2(1,2-BDC-F4)2(MeOH)]n (1) and [MnK2(1,2-BDC-F4)2(DMF)]n (2) assembled from 

M(OAc)2 (M = Co, Mn) and 1,2-H2BDC-F4 in the presence of KNO3. Both complexes have been 

characterized by single-crystal X-ray diffraction analyses, infrared spectra (IR), elemental anal-

yses, X-ray powder diffraction (XRPD), and thermogravimetric analyses (TGA). Magnetic sus-

ceptibility of 1 suggests a weak antiferromagnetic coupling interactions between adjacent Co(II) 

ions. 

2. Experimental 

2.1. Materials and general methods 

All chemicals were commercially available and used as received. Elemental analyses (C, H and N) 

were carried out on a PE–2400II (Perkin–Elmer) analyzer. Infrared spectra were recorded on a 
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Nicolet ESP 460 FT–IR spectrometer with KBr pellets in the range of 4000–400 cm–1. Thermo-

gravimetric analysis (TGA) experiments were performed on a Dupont thermal analyzer from 

room temperature to 800 °C (heating rate of 10 °C min–1, nitrogen stream). The X-ray powder 

diffraction (XRPD) patterns were recorded on a Rigaku D/Max-2500 diffractometer at 40 kV and 

100 mA for a Cu-target tube ( = 1.5406 Å), and a graphite monochromator. Simulation of the 

XPRD spectra were carried out by the single-crystal data and diffraction-crystal module of the 

Mercury program available free of charge via the Internet at http://www.iucr.org. 

Magnetic data of 1 were collected using crushed crystals of the sample on a Quantum Design 

MPMS-XL SQUID magnetometer equipped with a 5 T magnet. The data were corrected using 

Pascal’s constants to calculate the diamagnetic susceptibility, and an experimental correction for 

the sample holder was applied. 

2.2. Syntheses of complexes 

2.2.1. Synthesis of [CoK2(1,2-BDC-F4)2(MeOH)]n (1). Complex 1 was prepared by mixing 

equal molar 1,2-H2BDC-F4 (71.4 mg, 0.3 mmol), Co(NO3)2·6H2O (87.3 mg, 0.3 mmol) and 

KNO3 (30.3 mg, 0.3 mmol) in the MeOH/DMF mixed solvents (v/v, 9mL/3mL). After ca. 30 min 

of being stirred, the purple solution was filtered and left to stand at room temperature. After seven 

weeks, purple block crystals of 1 suitable for single-crystal X-ray diffraction were obtained by 

slow evaporation of the solvents in ca. 40% yield (77.3 mg, on the basis of 1,2-H2BDC-F4). Anal. 

Calcd. for C17H7CoF8K2O9 (%): C, 31.69; H, 1.09. Found: C, 31.57; H, 1.08. IR (KBr, cm–1): 

3159 br, 2975 m, 2936 m, 1664 s, 1600 s, 1512 m, 1469 m, 1407 s, 1387 s, 1343 m, 1276 w, 1121 

m, 1069 s, 953 s, 926 m, 867 m, 842 m, 815 w, 741 s, 708 m, 669 m, 616 w, 539 w, 496 w. 

2.2.2. Synthesis of [MnK2(1,2-BDC-F4)2(DMF)]n (2). The procedure was the same as that for 1 

except that Co(NO3)2·6H2O was replaced with Mn(OAc)2·4H2O (73.5 mg, 0.3 mmol), affording 

yellow block crystals of 2 in ca. 55% yield (111.9 mg, on the basis of 1,2-H2BDC-F4). Anal. 

Calcd. for C19H7F8K2MnNO9 (%): C, 33.64; H, 1.04; N, 2.06. Found: C, 34.11; H, 1.03; N, 2.07. 

IR (KBr, cm–1): 3540 m, 2958 m, 2923 m, 2823 m, 1631 s, 1591 s, 1513 m, 1469 s, 1426 s, 1384 

s, 1343 m, 1275 m, 1130 m, 1071 s, 1017 m, 952 m, 848 m, 808 w, 772 s, 764 s, 728 m, 695 w, 

616 w, 536 w, 498 w. 
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2.3. X-ray crystallography 

Single-crystal X-ray diffraction measurements of 1 and 2 were performed on a Bruker Apex II 

CCD diffractometer at ambient temperature with Mo Kα radiation (λ = 0.71073 Å). A semiempir-

ical absorption correction was applied using SADABS, and the program SAINT was used for inte-

gration of the diffraction profiles [10]. The structures were solved by direct methods using 

SHELXS program of SHELXTL packages and refined anisotropically for all non-H atoms by 

full-matrix least squares on F2 with SHELXL [11]. In general, hydrogen atoms were located geo-

metrically and allowed to ride during the subsequent refinement. O-bound H atoms were firstly 

located in difference Fourier maps, and then fixed geometrically with isotropic temperature fac-

tors. Further crystallographic data and structural refinement parameters are summarized in Table 1, 

and the selected bond lengths and angles are listed in Table 2. 

(Insert Table 1 & Table 2 here) 

3. Results and discussion 

3.1. Synthesis and general characterization 

Complexes 1 and 2 were prepared in the presence of KNO3 with metal acetate at room tempera-

ture. When using other alkali metal salts including LiOAc, NaOAc, RbOAc and CsOAc as the 

potential structure-directing agents, we were unable to isolate, under the same conditions, any 

solid products suitable for X-ray analysis. Complexes 1 and 2 are stable under ambient conditions 

and consistent with their polymeric nature are insoluble in water and common organic solvents. 

IR spectra of 1 and 2 show the antisymmetric and symmetric stretching vibrations of carboxylate 

in the range of 1590–1665 cm–1 and 1380–1470 cm–1, respectively. Additionally, the absence of 

strong absorption bands around 1740 and 1715 cm–1 for the free 1,2-H2BDC-F4 molecule is char-

acteristic of complete deprotonation of carboxyl groups in 1 and 2.  This is also confirmed by the 

X-ray structure analyses for 1 and 2.  

3.2. Description of crystal structures 

X-Ray diffraction studies of 1 and 2 reveal that they exhibit similar 2D heterometallic-organic 

frameworks despite their differenent space groups and solvent ligands. Therefore, only the crystal 
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structure of 1 will be described in detail. The asymmetric unit is made up of a half Co(II) ion, one 

K(I) ion, one 1,2-BDC-F4 dianion and one methanol ligand. As shown in Figure 1a, each Co(II) 

atom adopts a six-coordinated octahedral geometry provided by six oxygen atoms from four 

1,2-BDC-F4 ligands with the Co–O bond distances in the range of 2.063(2)–2.228(2) Å. The K(I) 

ion is surrounded by seven oxygen atoms from five 1,2-BDC-F4 ligands and one oxygen atom 

from one coordinated methanol molecule as well as one fluorine atom from one 1,2-BDC-F4 lig-

and. The K–O distances are in the range of 2.696–3.102(3) Å, and the K–F distance of 3.026 Å is 

similar to that of 3.009 Å observed in [K2(L)2(tmeda)2] (HL = 

N,N-diethyl-N’-2,3,5,6-tetrafluorophenylethane-1,2-diamine, and tmeda = 

N,N,N’,N’-tetramethyl-1,2-ethanediamine) [12]. In 1, the 1,2-BDC-F4 ligand takes an unusual 

μ7-bridging mode to connect two CoII ions and five K(I) ions, where one carboxylate group 

adopting a μ4-η
2:η3-bridging coordination mode links one Co(II) ion and three K(I) ions while the 

other one taking a μ5-η
2:η3-bridging mode bridges one Co(II) ion and four K(I) ions. The adjacent 

KO8F polyhedron are linked to each other via O1 and O3 atoms of carboxylate groups in an 

edge-sharing mode to form a tape along the [100] direction. Such 1-D motifs are connected by O5 

atoms of methanol molecules through vertex-sharing to fulfill the 2-D inorganic layer, and 

meanwhile the CoO6 polyhedron are embedded (see Figure 1b). The tetrafluorine-substituted 

benzene rings project on both the sides of the layer. Further, such layers showing a parallel ar-

rangement are connected by intermolecular F···F interactions (F2···F4i distance = 3.038 Å, i = x, 

–y + 1, z + 1/2; F3···F3ii distance = 2.957 Å, ii = –x, –y + 1, –z) to generate a 3-D supramolecular 

network (see Figure 1c). It should be pointed out that such heterometallic layered structure show 

extended inorganic connectivity in two directions, involving novel infinite K–O–Co linkages 

along zero organic connectivity (I2O0) [13]. The structure of 2 showing the atomic numbering 

scheme is shown in Figure 2. 

(Insert Figure 1 here) 

(Insert Figure 2 here) 

 

3.3. XRPD results 
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In order to confirm the phase purity of the bulk materials, X-ray powder diffraction (XRPD) ex-

periments were carried out for complexes 1 and 2. The experimental and computer-simulated pat-

terns of 1 and 2 are shown in Figure 3. Although the experimental patterns have a few un-indexed 

diffraction lines and some are slightly broadened in comparison with those simulated from sin-

gle-crystal X-ray diffraction, the bulk synthesized materials and the crystalline material used for 

single-crystal X-ray studies were the same for both complexes. 

(Insert Figure 3 here) 

3.4. TGA analyses 

Thermogravimetric analyses (TGA) of 1 and 2 were performed by heating the crystalline samples 

under an atmosphere of N2 between ambient temperature and 800 °C, and the corresponding 

curves are depicted in Figure 4. The TGA curves of 1 and 2 are similar, probably due to their 

structural similarity. Both complexes exhibits high thermal stability with the mass remaining 

largely unchanged until the decomposition onset temperature of approximately 260 °C. Critical 

weight losses in the temperature of 260–330 °C indicates the pyrolysis of organic components. 

Further heating to 800 °C induces a further continuous and slow weight loss. 

(Insert Figure 4 here) 

3.5. Magnetic studies 

Variable-temperature direct current (dc) magnetic susceptibility data of 1 were measured on poly-

crystalline samples in the temperature range of 2−300 K with an applied magnetic field of 1000 

Oe as shown in Figure 5. The χMT value at 300 K is 3.42 cm3mol−1K, which is larger than the 

spin-only value (1.875 cm3mol−1K, S = 3/2, g = 2) for the high-spin octahedral Co(II) ion as a 

consequence of unquenched orbital angular momentum [14]. Upon cooling, the χMT value de-

creases to reach a value of 1.76 cm3mol−1K at 2 K. Fitting of the data above 30 K to the Cu-

rie-Weiss law gives a negative Weiss constant θ = − 28.12 K and a Curie constant (C) of 3.71 

cm3mol−1K. The negative θ value and the decrease in χMT above 30 K suggest the antiferromag-

netic interaction between the shortest Co(II)−Co(II) distance. 

(Insert Figure 5 here) 
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4. Conclusion 

In summary, we report two 2-D K(I)-M(II) (M = Mn and Co) heterometallic-organic frameworks 

based on a perfluorinated phthalate ligand, giving novel K–O–M inorganic connectivities. Both 

complexes show strong K–F coordination, and an investigation on the crystal packing suggests 

that intermolecular FF interactions may act as important driving forces for the self-assembly of 

these 3-D supramolecular architectures, which further enrich our knowledge of met-

al-fluorocarbon coordination chemistry and supramolecular fluorine chemistry. In addition, weak 

antiferromagnetic interaction exists between Co(II) ions. 

Supplementary material 

CCDC 1037711 and 1037712 contain the supplementary crystallographic data for 1 and 2. These 

data can be obtained free of charge from The Cambridge Crystallographic Data Center via 

http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge 

CB2 1EZ, UK; fax: +44 1223 3360- 33; e-mail: deposit@ccdc.cam.ac.uk). 
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Table 1 Crystallographic data and structure refinement for complexes 1 and 2 

 1 2 

Empirical formula C17H7F8K2CoO9 C19H7F8K2MnNO9 

Formula weight 644.36 678.40 

Crystal size (mm3) 0.24 × 0.22 × 0.22 0.20 × 0.20 × 0.18 

Crystal system monoclinic monoclinic 

Space group P2/c P21/c 

a (Å) 7.132(1) 7.187(1) 

b (Å) 13.664(2) 30.265(5) 

c (Å) 11.167(1) 11.324(1) 

α (deg) 90 90 

β (deg) 112.426(8) 110.867(8) 

γ (deg) 90 90 

V (Å3) 1005.9(2) 2301.6(6) 

Z 2 4 

ρcalcd (g cm–3) 2.127 1.958 

μ (cm–1) 1.395 1.054 

F (000) 636 1340 

Range of h, k, l –8/7, –16/12, –13/13 –8/8, –35/31, –13/13 

Total/independent reflections 5334/1777 12371/4057 

Rint 0.0436 0.0703 

Ra, Rw
b 0.0472, 0.1263 0.0616, 0.1577 

GOFc 1.070 1.098 

Residuals (e Å–3) 1.420, –0.779 0.875, –0.791 

a R = Fo  Fc / Fo. 
b Rw = [[w(Fo

2  Fc
2)2] / w(Fo

2)2]1/2. c GOF = {[w(Fo
2  Fc

2)2]/(n  p)}1/2. 
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Table 2 Selected bond lengths (Å) and angles (deg) for complexes 1 and 2 

Complex 1 

Co(1)–O(1) 2.145(2) Co(1)–O(2) 2.228(2) 

Co(1)–O(3)#2 2.036(2) K(1)–O(1)#4 2.759(2) 

K(1)–O(2)#5 2.859(2) K(1)–O(2)#6 2.892(3) 

K(1)–O(3)#4 3.031(3) K(1)–O(3)#6 3.102(3) 

K(1)–O(4) 2.696(3) K(1)–O(4)#7 2.876(3) 

K(1)–O(5) 2.780(3) K(1)–F(1) 3.026(3) 

O(1)–Co(1)–O(1)#1 91.1(1) O(1)–Co(1)–O(2) 60.0(1) 

O(1)–Co(1)–O(3)#2 178.0(1) O(1)–Co(1)–O(3)#3 90.1(1) 

O(1)#1–Co(1)–O(2) 91.3(1) O(2)–Co(1)–O(2)#1 140.1(1) 

O(2)–Co(1)–O(3)#2 118.4(1) O(2)–Co(1)–O(3)#3 90.7(1) 

O(3)#2–Co(1)–O(3)#3 88.7(1) O(1)#4–K(1)–O(2)#5 139.9(1) 

O(1)#4–K(1)–O(2)#6 116.7(1) O(1)#4–K(1)–O(3)#4 68.6(1) 

O(1)#4–K(1)–O(3)#6 60.8(7) O(1)#4–K(1)–O(4) 127.0(8) 

O(1)#4–K(1)–O(4)#7 130.3(1) O(1)#4–K(1)–O(5) 64.5(1) 

O(1)#4–K(1)–F(1) 83.6(1) O(2)#5–K(1)–O(2)#6 103.5(1) 

O(2)#5–K(1)–O(3)#4 138.4(1) O(2)#5–K(1)–O(3)#6 146.4(1) 

O(2)#5–K(1)–O(4) 70.0(1) O(2)#5–K(1)–O(4)#7 63.9(1) 

O(2)#5–K(1)–O(5) 77.1(1) O(2)#5–K(1)–F(1) 77.7(1) 

O(2)#6–K(1)–O(3)#4 62.1(1) O(2)#6–K(1)–O(3)#6 64.3(1) 

O(2)#6–K(1)–O(4) 65.7(1) O(2)#6–K(1)–O(4)#7 67.1(1) 

O(2)#6–K(1)–O(5) 162.3(1) O(2)#6–K(1)–F(1) 119.3(1) 

O(3)#4–K(1)–O(3)#6 66.1(1) O(3)#4–K(1)–O(4) 68.5(1) 

O(3)#4–K(1)–O(4)#7 128.0(1) O(3)#4–K(1)–O(5) 128.9(1) 

O(3)#4–K(1)–F(1) 77.5(1) O(3)#6–K(1)–O(4) 123.6(1) 

O(3)#6–K(1)–O(4)#7 82.8(1) O(3)#6–K(1)–O(5) 105.3(1) 

O(3)#6–K(1)–F(1) 135.8(1) O(4)–K(1)–O(4)#7 100.6(1) 
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O(4)–K(1)–O(5) 129.2(1) O(4)–K(1)–F(1) 57.9(1) 

O(4)#7–K(1)–O(5) 98.2(1) O(4)#7–K(1)–F(1) 141.1(1) 

O(5)–K(1)–F(1) 78.3(1)   

Complex 2 

Mn(1)–O(1) 2.303(3) Mn(1)–O(2) 2.254(3) 

Mn(1)–O(3)#8 2.229(3) Mn(1)–O(4)#8 2.603(3) 

Mn(1)–O(5) 2.155(3) Mn(1)–O(6) 2.541(3) 

Mn(1)–O(8)#9 2.123(3) K(1)–O(1)#8 2.902(3) 

K(1)–O(3)#8 3.178(4) K(1)–O(4)#12 2.749(4) 

K(1)–O(5) 2.802(3) K(1)–O(6)#11 2.811(3) 

K(1)–O(7)#10 2.801(4) K(1)–O(8) 3.268(4) 

K(1)–O(9) 2.786(4) K(1)–F(9)#12 2.897(3) 

K(2)–O(1) 2.868(3) K(2)–O(2)#11 2.841(4) 

K(2)–O(3)#11 2.949(4) K(2)–O(4)#8 3.051(4) 

K(2)–O(6)#10 2.936(3) K(2)–O(7)#13 2.808(4) 

K(2)–O(8)#10 2.958(4) K(2)–O(9) 2.711(4) 

K(2)–F(8)#13 2.859(3)   

O(1)–Mn(1)–O(2) 57.6(1) O(1)–Mn(1)–O(3)#8 125.3(1) 

O(1)–Mn(1)–O(4)#8 72.5(1) O(1)–Mn(1)–O(5) 101.7(1) 

O(1)–Mn(1)–O(6) 145.0(1) O(1)–Mn(1)–O(8)#9 94.1(1) 

O(2)–Mn(1)–O(3)#8 175.5(1) O(2)–Mn(1)–O(4)#8 128.7() 

O(2)–Mn(1)–O(5) 94.3(1) O(2)–Mn(1)–O(6) 95.2(1) 

O(2)–Mn(1)–O(8)#9 90.0(1) O(3)#8–Mn(1)–O(4)#8 53.4(4) 

O(3)#8–Mn(1)–O(5) 88.5(1) O(3)#8–Mn(1)–O(6) 83.4(1) 

O(3)#8–Mn(1)–O(8)#9 86.4(1) O(4)#8–Mn(1)–O(5) 107.3(1) 

O(4)#8–Mn(1)–O(6) 135.4(1) O(4)#8–Mn(1)–O(8)#9 82.0(1) 

O(5)–Mn(1)–O(6) 55.1(1) O(5)–Mn(1)–O(8)#9 163.5(1) 

O(6)–Mn(1)–O(8)#9 108.6(1) O(1)#8–K(1)–O(3)#8 62.6(1) 

O(1)#8–K(1)–O(4)#12 62.0(1) O(1)#8–K(1)–O(5) 115.4(1) 

O(1)#8–K(1)–O(6)#11 103.0(1) O(1)#8–K(1)–O(7)#10 67.1(1) 



 12 

O(1)#8–K(1)–O(8) 63.1(1) O(1)#8–K(1)–O(9) 159.5(1) 

O(1)#8–K(1)–F(9)#12 119.5(1) O(3)#8–K(1)–O(4)#12 113.8(1) 

O(3)#8–K(1)–O(5) 61.2(9) O(3)#8–K(1)–O(6)#11 150.9(1) 

O(3)#8–K(1)–O(7)#10 84.3(1) O(3)#8–K(1)–O(8) 62.6(1) 

O(3)#8–K(1)–O(9) 106.5(1) O(3)#8–K(1)–F(9)#12 133.7(1) 

O(4)#12–K(1)–O(5) 118.4(1) O(4)#12–K(1)–O(6)#11 74.9(1) 

O(4)#12–K(1)–O(7)#10 104.5(1) O(4)#12–K(1)–O(8) 61.8(1) 

O(4)#12–K(1)–O(9) 136.3(1) O(4)#12–K(1)–F(9)#12 59.4(1) 

O(5)–K(1)–O(6)#11 141.3(1) O(5)–K(1)–O(7)#10 132.5(1) 

O(5)–K(1)–O(8) 64.6(1) O(5)–K(1)–O(9) 67.6(1) 

O(5)–K(1)–F(9)#12 81.6(1) O(6)#11–K(1)–O(7)#10 66.7(1) 

O(6)#11–K(1)–O(8) 136.2(1) O(6)#11–K(1)–O(9) 78.3(1) 

O(6)#11–K(1)–F(9)#12 75.1(1) O(7)#10–K(1)–O(8) 128.7(1) 

O(7)#10–K(1)–O(9) 95.5(1) O(7)#10–K(1)–F(9)#12 141.5(1) 

O(8)–K(1)–O(9) 129.6(1) O(8)–K(1)–F(9)#12 77.5(1) 

O(9)–K(1)–F(9)#12 80.8(1) O(1)–K(2)–O(2)#11 140.6(1) 

O(1)–K(2)–O(3)#11 135.5(1) O(1)–K(2)–O(4)#8 58.8(1) 

O(1)–K(2)–O(6)#10 100.7(1) O(1)–K(2)–O(7)#13 67.5(1) 

O(1)–K(2)–O(8)#10 145.5(1) O(1)–K(2)–O(9) 75.8(1) 

O(1)–K(2)–F(8)#13 78.4(1) O(2)#11–K(2)–O(3)#11 66.3(1) 

O(2)#11–K(2)–O(4)#8 137.1(1) O(2)#11–K(2)–O(6)#10 118.6(1) 

O(2)#11–K(2)–O(7)#13 125.1(1) O(2)#11–K(2)–O(8)#10 64.5(1) 

O(2)#11–K(2)–O(9) 69.4(1) O(2)#11–K(2)–F(8)#13 79.6(1) 

O(3)#11–K(2)–O(4)#8 133.9(1) O(3)#11–K(2)–O(6)#10 65.5(1) 

O(3)#11–K(2)–O(7)#13 68.5(1) O(3)#11–K(2)–O(8)#10 69.1(1) 

O(3)#11–K(2)–O(9) 132.9(1) O(3)#11–K(2)–F(8)#13 74.0(1) 

O(4)#8–K(2)–O(6)#10 68.7(1) O(4)#8–K(2)–O(7)#13 97.0(1) 

O(4)#8–K(2)–O(8)#10 86.7(1) O(4)#8–K(2)–O(9) 90.4(1) 

O(4)#8–K(2)–F(8)#13 136.9(1) O(6)#10–K(2)–O(7)#13 64.9(1) 

O(6)#10–K(2)–O(8)#10 64.3(1) O(6)#10–K(2)–O(9) 156.4(1) 

O(6)#10–K(2)–F(8)#13 119.4(1) O(7)#13–K(2)–O(8)#10 123.4(1) 
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O(7)#13–K(2)–O(9) 131.2(1) O(7)#13–K(2)–F(8)#13 59.2(1) 

O(8)#10–K(2)–O(9) 105.2(1) O(8)#10–K(2)–F(8)#13 136.2(1) 

O(9)–K(2)–F(8)#13 83.2(1)   

a Symmetry transformations used to generate equivalent atoms. For 1, #1: – x, y, – z – 1/2; #2: 

x, – y, z – 1/2; #3: – x, – y, – z; #4: – x, y, – z + 1/2; #5: – x + 1, y, – z + 1/2; #6: x, – y, z + 1/2; 

#7: – x + 1, – y, – z + 1; For 2, #8: x, – y + 1/2, z – 1/2; #9: x, – y + 1/2, z + 1/2; #10: x + 1, – y 

+ 1/2, z + 1/2; #11: 1 + x, y, z; #12: x, y, z – 1; #13: x + 1, y, z + 1. 

 

Caption to figures 

 

Figure 1 View of (a) the coordination environments of the CoII and KI ions in 1. Symmetry 

codes: (1) –x, y, –z – 1/2; (2) x, –y, z – 1/2; (3) –x, –y, –z; (4) –x, y, –z + 1/2; (5) –x + 

1, y, –z + 1/2; (6) x, –y, z + 1/2; (7) –x + 1, –y, –z + 1. (b) polyhedral representation 

of the 2-D K–O–Co inorganic connectivity of 1 (CoII and KI ions are highlighted in 

turquoise and pink polyhedral, respectively). (c) 3-D supramolecular framework of 1 

through interlayer FF interactions (green dashed lines). Irrelevant hydrogen atoms 

are omitted for clarity. 

Figure 2 View of the structure of 2 showing atomic numbering scheme. 

Figure 3 Experimental and simulated PXRD patterns for complexes 1 (a) and 2 (b). 

Figure 4 TGA curves of complexes 1 and 2. 

Figure 5 Temperature dependence of the χMT product at 1000 Oe for 1. Inset: Plot of χM
−1 vs. 

T (the solid red line represents a fit to the high temperature region above 30 K ac-

cording to the Curie–Weiss law). 
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