12 research outputs found

    Carbon Nanotubes Used for Renewable Energy Applications and Environmental Protection/Remediation: A Review

    No full text
    Carbon nanotubes are surprisingly ubiquitous in their use for renewable energy applications as well as for environmental protection and remediation. Hence, this is the motivation for the current review, to investigate into their usefulness. The characteristic properties of these nanotubes is a result of their large surface areas, and their unique mechanical, electrical and chemical properties, and in no small part, due to its relatively easy manufacturability. Research has been done using carbon nanotubes for hydrogen storage, although it does not seem logical that carbon nanotubes would be very useful for this purpose. Carbon nanotubes used for solar collectors are used mainly for their improved thermal and electrical conductivities. Organic solar cells do not have a long life since they deteriorate in the sun. Research into long-lasting, yet inexpensive organic solar cells is an active area, and should continue to be so for some time. Carbon nanotubes are activated by certain chemicals. They may be used to react with solids, liquids and gases. Hence, they are employed for waste water treatment, liquid and gaseous cleanup. They may be used to remove metals as well as life pathogens. As the number of new pollutants and pathogens entering the environment multiply, research should continue to study the use of carbon nanotubes with regards prevention and remediation.</jats:p

    Exploring the Ecology of Deep-Sea Hydrothermal Vents in a Metacommunity Framework

    No full text
    Species inhabiting deep-sea hydrothermal vents are strongly influenced by the geological setting, as it provides the chemical-rich fluids supporting the food web, creates the patchwork of seafloor habitat, and generates catastrophic disturbances that can eradicate entire communities. The patches of vent habitat host a network of communities (a metacommunity) connected by dispersal of planktonic larvae. The dynamics of the metacommunity are influenced not only by birth rates, death rates and interactions of populations at the local site, but also by regional influences on dispersal from different sites. The connections to other communities provide a mechanism for dynamics at a local site to affect features of the regional biota. In this paper, we explore the challenges and potential benefits of applying metacommunity theory to vent communities, with a particular focus on effects of disturbance. We synthesize field observations to inform models and identify data gaps that need to be addressed to answer key questions including: (1) what is the influence of the magnitude and rate of disturbance on ecological attributes, such as time to extinction or resilience in a metacommunity; (2) what interactions between local and regional processes control species diversity, and (3) which communities are “hot spots” of key ecological significance. We conclude by assessing our ability to evaluate resilience of vent metacommunities to human disturbance (e.g., deep-sea mining). Although the resilience of a few highly disturbed vent systems in the eastern Pacific has been quantified, these values cannot be generalized to remote locales in the western Pacific or mid Atlantic where disturbance rates are different and information on local controls is missing.© 2018 Mullineaux, Metaxas, Beaulieu, Bright, Gollner, Grupe, Herrera, Kellner, Levin, Mitarai, Neubert, Thurnherr, Tunnicliffe, Watanabe and Wo
    corecore