10,803 research outputs found

    Inference and Optimization of Real Edges on Sparse Graphs - A Statistical Physics Perspective

    Get PDF
    Inference and optimization of real-value edge variables in sparse graphs are studied using the Bethe approximation and replica method of statistical physics. Equilibrium states of general energy functions involving a large set of real edge-variables that interact at the network nodes are obtained in various cases. When applied to the representative problem of network resource allocation, efficient distributed algorithms are also devised. Scaling properties with respect to the network connectivity and the resource availability are found, and links to probabilistic Bayesian approximation methods are established. Different cost measures are considered and algorithmic solutions in the various cases are devised and examined numerically. Simulation results are in full agreement with the theory.Comment: 21 pages, 10 figures, major changes: Sections IV to VII updated, Figs. 1 to 3 replace

    Minimizing Unsatisfaction in Colourful Neighbourhoods

    Get PDF
    Colouring sparse graphs under various restrictions is a theoretical problem of significant practical relevance. Here we consider the problem of maximizing the number of different colours available at the nodes and their neighbourhoods, given a predetermined number of colours. In the analytical framework of a tree approximation, carried out at both zero and finite temperatures, solutions obtained by population dynamics give rise to estimates of the threshold connectivity for the incomplete to complete transition, which are consistent with those of existing algorithms. The nature of the transition as well as the validity of the tree approximation are investigated.Comment: 28 pages, 12 figures, substantially revised with additional explanatio

    Message passing for task redistribution on sparse graphs

    Get PDF
    The problem of resource allocation in sparse graphs with real variables is studied using methods of statistical physics. An efficient distributed algorithm is devised on the basis of insight gained from the analysis and is examined using numerical simulations, showing excellent performance and full agreement with the theoretical results

    Resource allocation in sparse graphs

    Get PDF
    Resource allocation in sparsely connected networks, a representative problem of systems with real variables, is studied using the replica and Bethe approximation methods. An efficient distributed algorithm is devised on the basis of insights gained from the analysis and is examined using numerical simulations,showing excellent performance and full agreement with the theoretical results. The physical properties of the resource allocation model are discussed

    Optimal distribution in smart grids with volatile renewable sources using a message passing algorithm

    Get PDF
    The design of future electricity grids will allow for renewable energy generators to be effectively incorporated into the network. Current methods of economic dispatch were not designed to accommodate the level of volatility and uncertain nature of sources such as wind and solar; here we demonstrate how an optimisation algorithm called message passing, which is based on principled statistical physics methodologies and is inherently probabilistic, could be an alternative way of considering source volatility efficiently and reliably. The algorithm iteratively passes probabilistic messages in order to find an approximate global optimal solution with moderate computational complexity and inherently consider source volatility. We demonstrate the capabilities of message passing as a distribution algorithm in the presence of uncertainty on synthetic benchmark IEEE networks and show how the volatility increase effects distribution cost

    Distributed algorithms for global optimization on sparse networks of arbitrary bandwidths

    Get PDF
    The optimization of resource allocation in sparse networks with real variables is studied using methods of statistical physics. Efficient distributed algorithms are devised on the basis of insight gained from the analysis and are examined using numerical simulations, showing excellent performance and full agreement with the theoretical results
    • …
    corecore