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Optimal resource allocation is a well known problem in the area of distributed computing [1, 2] to
which significant effort has been dedicated within the computer science community. The problem itself
is quite general and is applicable to other areas as well where a large number of nodes are required to
balance loads/resources, such as reducing internet trafficcongestion [3]. The problem has many flavours
and usually refers, in the computer science literature, to finding practical algorithmic solutions to the
distribution of computational load between computers connected in a predetermined manner. Many of
the solutions are heuristic and focus on practical aspects (e.g., communication protocols).

The problem we are addressing is more generic and is represented by nodes of some computational
power that should carry out some tasks. Both computational powers and tasks will be chosen at random
from some arbitrary distribution. The nodes are located on arandomly chosen sparse graph of some
connectivity. The goal is to migrate tasks on the graph such that demands will be satisfied while min-
imising the migration of (sub-)tasks. Decisions on messages to be passed are carried out locally. We
focus here on the satisfiable case where the total computing power is greater than the demand, and where
the number of nodes involved is very large. We analyse the problem using both the Bethe approximation
and the replica method [4] of statistical physics. The latter will not be discussed in this extended abstract
but can be found in [5]. Insights gained from the analysis give rise efficient message passing distributed
algorithms for solving the problem with a modest computational cost. The approach is based on passing
local information between nodes to facilitate decisions about the movement of tasks.

The Bethe approximation: We consider a typical resource allocation task on a sparse graph ofN
nodes, labelledi = 1, .., N . Each nodei is randomly connected toc other nodes1 and has a capacityΛi

randomly drawn from a distributionρ(Λi). The objective is to migrate tasks between nodes such that
each node will be capable of carrying out its tasks. Thecurrent yij ≡ −yji drawn from nodej to i is
aimed at satisfying the constraint

∑

j Aijyij +Λi ≥ 0 , representing the ‘revised’ assignment for nodei,
whereAij = 1/0 for connected/unconnected node pairsi andj, respectively. To illustrate the statistical
mechanics approach to resource allocation, we consider theload balancing task of minimising the energy
function (cost)E =

∑

(ij)Aijφ(yij), where the summation(ij) runs over all pairs of nodes, subject to
the above constraints;φ(y) is a general even function of the currenty.

When the connectivityc is low, the probability of finding a loop of finite length on thegraph is low,
and the Bethe approximation describes well the local environment of a node. In the approximation, a
node is connected toc branches in a tree structure, and the correlations among thebranches of the tree
are neglected. In each branch, nodes are arranged in generations. A node is connected to an ancestor
node of the previous generation, and anotherc− 1 descendent nodes of the next generation.

We derive a recursion relation for calculating the free energy of the system, the average asymp-
totic cost and the current distribution. Similar results have been obtained from the replica approach [5].
Although both derivations have been formulated for generalcost functions, we concentrate on the par-
ticularly simple case ofφ(y)=y2/2, where one can compare the obtained solutions with known results.

1Although we focus here on graphs of fixed connectivity, one can easily accommodate any connectivity profile within the
same framework; the algorithms presented later are completely general.
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Distributed algorithms: The local nature of the recursion relation we obtained points to the pos-
sibility that the network optimisation can be solved by message passing approaches, which have been
successful in problems such as error-correcting codes [6] and probabilistic inference [7]. The major
advantage of message passing is its potential to solve a global optimisation problem via local updates,
thereby reducing the computational complexity. For example, the computational complexity of quadratic
programming for the load balancing task typically scales asN3, whereas capitalising on the network
topology underlying the connectivity of the variables, message passing scales asN . An even more im-
portant advantage, relevant to practical implementation,is its distributive nature; it does not require a
global optimiser, and is particularly suitable for distributive control in evolving networks.

However, in contrast to other message passing algorithms which pass conditional probability esti-
mates ofdiscrete variables to neighbouring nodes, the messages in the present context are more com-
plex, since they arefunctions of the currenty. We simplify the message to 2 parameters, namely, the first
and second derivatives of these functions. For the quadratic load balancing task, it can be shown that the
message functions are piecewise quadratic with continuousslopes. This makes the 2-parameter message
a very precise approximation. The message passed from nodej to i, (Aij , Bij) becomes

Aij ← −µij, Bij ← Θ(−µij)





∑

k 6=i

Ajk(φ
′′
jk + Bjk)

−1





−1

, (1)

where µij = min

[

∑

k 6=iAjk[yjk − (φ′
jk + Ajk)(φ

′′
jk + Bjk)

−1] + Λj − yij
∑

k 6=iAjk(φ
′′
jk + Bjk)−1

, 0

]

, (2)

with φ′
jk andφ′′

jk representing the first and second derivatives ofφ(y) at y = yjk respectively. The
forward passing of the message from nodej to i is then followed by a backward message from nodej to

k for updating the currentsyjk according toyjk ← yjk −
φ′

jk
+Ajk+µij

φ′′

jk
+Bjk

. For the quadratic load balancing

task considered here, an independent exact optimisation isavailable for comparison. The Kühn-Tucker
conditions for the optimal solution yields

µi = min





1

c





∑

j

Aijµj + Λi



 , 0



 . (3)

Numerical results: We exploit both the theoretical framework developed using methods of statis-
tical physics and the message passing techniques mentionedabove to study properties of the resource
allocation problem with a quadratic cost function. The iterative solution of the free energy is obtained
numerically using the recursion relation obtained from theBethe approximation. We generate 1000
nodes at each iteration with capacities randomly drawn fromthe distributionρ(Λ) = N (〈Λ〉, 1), and
each is being fed byc−1 nodes randomly drawn from the previous iteration.

Figure 1(a) illustrates the current distribution for various average capacities. The distributionP (y)
consists of a delta function component aty = 0 and a continuous component whose breadth decreases
with average capacity. The fraction of links with zero currents increases with the average capacity.
Hence at a low average capacity, links with nonzero currentsform a percolating cluster, whereas at a
high average capacity, it breaks into isolated clusters. Asshown in Fig. 1(b), both the analytic results
and the message passing algorithm Eq.(1) yield excellent agreement with the iteration of Eq.(3). Besides
the case ofc = 3, Fig. 1(b) also shows the simulation results of the average energy forc = 4, 5, using
both Eqs. (1) and (3). We see that the average energy decreases when the connectivity increases. This is
because the increase in links connecting a node provides more freedom to allocate resources. When the
average capacity is 0.2 or above, an exponential fit〈E〉 ∼ exp(−k〈Λ〉) is applicable, wherek lies in the
range 2.5 to 2.7. Remarkably, multiplying by a factor of(c−2), we find that the 3 curves collapse in this
regime of average capacity, showing that the average energyscales as(c− 2)−1 in this regime (inset).

Further properties of the optimised networks have been studied by simulations, and will be presented
elsewhere. Here we merely summarise the main results: (a) When the average capacity drops below
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Figure 1: Results for system sizeN = 1000 andφ(y) = y2/2. (a) The distributionP (y) obtained by
iterating the recursive equations to steady states for〈Λ〉=0.1, 0.2, 0.4, 0.6, 0.8 from right to left. Inset:
P (y =0) as a function of〈Λ〉. Symbols:c=3 (©) and (�), c=4 (♦) and (△), c=5 (⊳) and (∇); each
pair obtained from Eqs. (1) and (3) respectively. Line:erf(〈Λ〉/

√
2). (b) Mean cost〈E〉 as a function of

〈Λ〉 for c = 3, 4, 5. Symbols: results obtained by iterating the recursive equations to steady states (©),
Eq.(1) (�), and Eq. (3) (♦). Inset:〈E〉multiplied by(c−2) as a function of〈Λ〉 for the same conditions.

0.1, the energy rises above the exponential fit applicable tothe average capacity above 0.2. (b) The
fraction of links with zero currents increases with the average capacity, and is rather insensitive to the
connectivity. Remarkably, except for very small average capacities, the functionerf(〈Λ〉/

√
2) has a very

good fit with the data. Indeed, in the limit of large〈Λ〉, this function approaches the fraction of links with
both vertices unsaturated, that is,[

∫ ∞

0 dΛρ(Λ)]2. (c) The fraction of unsaturated nodes increases with
the average capacity, and is rather insensitive to the connectivity. In the limit of large average capacities,
it approaches the upper bound of

∫ ∞

0 dΛρ(Λ), which is the probability that the capacity of a node is
non-negative. (d) The convergence time of both the Bethe recursion equations and Eq. (3) follows a
power-law dependence on the average capacity when the average capacity is 0.2 or above; the exponent
is ranging from−1 for c=3 to−0.8 for c=5 for Eq. (3), and being about -0.5 forc=3, 4, 5 for Eq. (1).
When the average capacity decreases further, the convergence time deviates above the power laws.

Summary: We have studied a prototype problem of resource allocation on sparsely connected net-
works using the replica method and the Bethe approximation.The resultant recursion relation leads to
a message passing algorithm for optimising the average energy, which significantly reduces the compu-
tational complexity of the global optimisation task and is suitable for online distributive control. The
suggested 2-parameter approximation produces results with excellent agreement with the original recur-
sion relation. We have considered the simple but illustrative example of a quadratic cost function, where
both Bethe recursion equations and message passing algorithm show remarkable agreement with the ex-
act result. The suggested simple message passing algorithmcan be generalised to more realistic cases of
nonlinear cost functions and additional constraints on thecapacities of nodes and links. This constitutes
a rich area for further investigations with many potential applications.
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