
Distributed algorithms for global optimizationon sparse networks of arbitrary bandwidthsK. Y. Mihael Wong1, C. H. Yeung1, and David Saad21Department of Physis, Hong Kong University of Siene and TehnologyClear Water Bay, Hong Kong, China2NCRG, Aston University, Birmingham B4 7ET, UKphkywong�ust.hk, phbill�ust.hk, d.saad�aston.a.ukAbstrat. The optimization of resoure alloation in sparse networkswith real variables is studied using methods of statistial physis. Ef-�ient distributed algorithms are devised on the basis of insight gainedfrom the analysis and are examined using numerial simulations, showingexellent performane and full agreement with the theoretial results.1 IntrodutionThe optimization of resoure alloation is a well known problem in the area ofdistributed omputing [1, 2℄ to whih signi�ant e�ort has been dediated withinthe omputer siene ommunity. It is representative of a large lass of problemsin many other areas where a large number of nodes are required to balane theirresoures and redistribute tasks, suh as reduing internet traÆ ongestion andstreamlining network ows of ommodities [3, 4℄. Many attempts were madein the omputer siene ommunity, to �nd pratial heuristi solutions to thedistribution of omputational load between omputers onneted by networks.The traditional approah to network optimization is to adopt omputation-ally demanding global optimization tehniques, suh as linear or quadrati pro-gramming [5℄. On the other hand, message-passing approahes have gained re-ent suess in problems with disrete variables onneted by network stru-tures, suh as error-orreting odes [6℄ and probabilisti inferene [7℄. Theseapproahes have the potential to solve global optimization problems via loalupdates, thereby reduing the omputational omplexity. For example, the om-putational omplexity of quadrati programming for the load balaning task typ-ially sales as the ube of the system size, whereas apitalizing on the networktopology underlying the onnetivity of the variables, message-passing saleslinearly with the system size. An even more important advantage of messagepassing tehniques, relevant to pratial implementation, is their distributivenature. Sine they do not require a global optimizer, they are partiularly suit-able for distributive ontrol in large or evolving networks. While most analysesso far have foused on ases of disrete variables, here we explore networks ofontinuous variables.To study the priniples and ingredients in realizing global optimization throughdistributed algorithms, we will examine here, as a vehile, the task of resoure
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2alloation. We address a generi version of the problem, whih is represented bynodes of some omputational power that should arry out tasks. Both omputa-tional powers and tasks will be hosen at random from some arbitrary distribu-tion. The nodes are loated on a randomly hosen sparse network of some givenonnetivity. The goal is to migrate tasks on the network suh that demandswill be satis�ed while minimizing the migration of (sub-)tasks. This formulationof the problem is reminisent of many disordered systems in physis [8℄, andmethods of statistial physis an be used to generate insights. Early and partialwork in this diretion was presented in [9℄.In Setion 2, we analyze the problem using the Bethe approximation of sta-tistial mehanis. We then present numerial results in Setion 3, and derivenew distributed algorithms on the basis of the analysis in Setions 4 and 5. Thestudy is extended to the unsatis�able ase in Setion 18. We onlude the paperin Setion 7.2 The theoretial frameworkWe onsider a typial resoure alloation task on a sparse network of N nodes,labelled i = 1; ::; N . Eah node i is randomly onneted to  other nodes1, andhas a apaity �i randomly drawn from a distribution �(�i). The objetive is tomigrate tasks between nodes suh that eah node will be apable of arrying outits tasks. The urrent yij � �yji drawn from node j to i is a ontinuous variableaimed at satisfying the node apaity onstraints for all i,Xj Aijyij + �i � 0 ; (1)where Aij=1 or 0 for onneted or unonneted node pairs i and j, respetively.The urrents yij satisfy the link bandwidth onstraints �W � yij � W for allonneted pairs with Aij = 1.We onsider the load balaning task of minimizing the energy funtion (ost)E = P(ij)Aij�(yij), where the summation (ij) runs over all pairs of nodes,subjet to the onstraints (1); �(y) is a general funtion of the urrent y. Forload balaning tasks, �(y) is typially a onvex funtion, whih will be assumedin our study.For suÆiently largeW and apaity distributions with non-negative average�, the optimal solution of the problem exists for suÆiently large networks.We all this the satis�able ase, whih will be onsidered in Setions 3 to 5for unonstrained links (W = 1) and h�i > 0. The unsatis�able ase will beonsidered in Setion 18.1 Although we fous here on graphs of �xed onnetivity, one an easily aommodateany onnetivity pro�le within the same framework; the algorithms presented laterare ompletely general.



3The analysis of the network is done by introduing the free energy F =�T lnZy for a temperature T � ��1, where Zy is the partition funtionZy =Y(ij) Z W�W dyijYi �0�Xj Aijyij + �i1A exp24��X(ij) Aij�(yij)35 : (2)The � funtion returns 1 for a non-negative argument and 0 otherwise.When the onnetivity  is low, the probability of �nding a loop of �nitelength on the graph is low, and the Bethe approximation well desribes theloal environment of a node. In the approximation, a node is onneted to branhes in a tree struture, and the orrelations among the branhes of thetree are negleted. In eah branh, nodes are arranged in generations. A nodeis onneted to an anestor node of the previous generation, and another � 1desendent nodes of the next generation. Thus, the node is the vertex of the treestruture formed by its desendents.Consider a vertex V (T) of a tree T having a apaity �V (T), and a urrenty is drawn from the vertex by its anestor. One an write an expression for thefree energy F (yjT) as a funtion of the free energies F (ykjTk) of its desendants,that branh out from this vertexF (yjT) = �T ln(�1Yk=1 Z W�W dyk!� �1Xk=1 yk� y +�V (T)!� exp"�� �1Xk=1 (F (ykjTk) + �(yk))#); (3)where Tk represents the tree terminated at the kth desendent of the vertex. Thefree energy an be onsidered as the sum of two parts, F (yjT)=NTFav+FV (yjT),where NT is the number of nodes in the tree T, Fav is the average free energyper node, and FV (yjT) is referred to as the vertex free energy. Note that whena vertex is added to a tree, there is a hange in the free energy due to theadded vertex. Sine the number of nodes inreases by 1, the vertex free energy isobtained by subtrating the free energy hange by the average free energy. Thisallows us to obtain the reursion relationFV (yjT) = �T ln(�1Yk=1 Z W�W dyk!� �1Xk=1 yk � y + �V (T)!� exp"�� �1Xk=1 (FV (ykjTk) + �(yk))#)� Fav: (4)



4The average free energy per node is obtained by onsidering the average inreasein the total free energy when a node is added to the network,Fav = �T*ln( Yk=1 Z W�W dyk!� Xk=1 yk + �V!� exp"�� Xk=1 (FV (ykjTk) + �(yk))#)+�; (5)where �V is the apaity of the vertex V fed by  trees T1; : : : ;T, and h�i� rep-resents the average over the distribution �(�). For optimization, we take the zerotemperature limit of Eq. (4), in whih the free energy redues to the minimumenergy, yieldingFV (yjT) = minfykjP�1k=1 yk�y+�V (T)�0g"�1Xk=1 (FV (ykjTk) + �(yk))#� Fav: (6)These iterative equations an be diretly linked to those obtained from a prin-ipled Bayesian approximation, where the logarithms of the messages passedbetween nodes are proportional to the vertex free energies.The urrent distribution and the average free energy per link an be derivedby integrating the urrent y0 in a link from one vertex to another, fed by thetrees T1 and T2, respetively; the obtained expressions are P (y)= hÆ(y � y0)i?and hEi=h�(y0)i? whereh�i? = �R dy0 exp [�� (FV (y0jT1) + FV (�y0jT2) + �(y0))℄ (�)R dy0 exp [�� (FV (y0jT1) + FV (�y0jT2) + �(y0))℄ �� : (7)Before losing this setion, we mention the alternative analysis of the problemusing the replia method [10, 11℄, whih was suessfully applied in the physisof disordered systems. The derivation is rather involved (details will be providedelsewhere), but gives rise to the same reursive equation Eq. (4) as in the Betheapproximation.3 Numerial solutionThe Bethe approximation provides a theoretial tool to analyze the propertiesof optimized networks. The solution of Eq. (6) is free from �nite size e�etsinherent in Monte Carlo simulations, and an be obtained numerially. Sine thevertex free energy of a node depends on its own apaity and the disorderedon�guration of its desendants, we generate 1000 nodes at eah iteration ofEq. (6), with apaities randomly drawn from the distribution �(�), eah beingfed by �1 nodes randomly drawn from the previous iteration.We have disretized the vertex free energies FV (yjT) funtion into a vetor,whose ith omponent takes the value FV (yijT). To speed up the optimization



5searh at eah node, we �rst �nd the vertex saturation urrent drawn from a nodesuh that: (a) the apaity of the node is just used up; (b) the urrent drawnby eah of its desendant nodes is just enough to saturate its own apaity on-straint. At this saturation point, we an separately optimize the urrent drawnby eah desendant node, providing a onvenient starting point for searhing theoptimal solutions.To ompute the average energy, we randomly draw 2 nodes, ompute theoptimal urrent owing between them, and repeat the proess 1000 times toobtain the average. Figure 1(a) shows the results as a funtion of iteration stept, for a Gaussian apaity distribution �(�) with variane 1 and average h�i.Eah iteration orresponds to adding one extra generation to the tree struture,suh that the iterative proess orresponds to approximating the network byan inreasingly extensive tree. We observe that after an initial rise with itera-tion steps, the average energies onverge to steady-state values, at a rate whihinreases with the average apaity.To study the onvergene rate of the iterations, we �t the average energy atiteration step t using hE(t)�E(1)i � exp(�t) in the asymptoti regime. Asshown in the inset of Fig. 1(a), the relaxation rate  inreases with the averageapaity. It is interesting to note that a usp exists at the average apaity ofabout 0.45. Below that value, onvergene of the iteration is slow, sine theaverage energy urve starts to develop a plateau before the �nal onvergene.On the other hand, the plateau disappears and the onvergene is fast abovethe usp. The slowdown of onvergene below the usp is probably due to theappearane of inreasingly large lusters of nonzero urrents on the network,sine lusters of nodes with negative apaities beome inreasingly extensive,and need to draw urrents from inreasingly extensive regions of nodes withexess apaities to satisfy the demand.4 Distributed algorithms: message-passingThe loal nature of the reursion relation Eq. (6) points to the possibility that thenetwork optimization an be solved by loal iterative approahes. However, inontrast to other message-passing algorithms whih pass onditional probabilityestimates of disrete variables to neighboring nodes, the messages in the presentontext are more omplex, sine they are funtions FV (yjT) of the urrent y. Wesimplify the message to 2 parameters, namely, the �rst and seond derivatives ofthe vertex free energies. For the quadrati load balaning task, it an be shownthat a self-onsistent solution of the reursion relation, Eq. (6), onsists of vertexfree energies whih are pieewise quadrati with ontinuous slopes. This makesthe 2-parameter message a very preise approximation.
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Fig. 1. Results for N=1000, �(y) = y2=2 andW =1. (a) hEi=N obtained by iteratingEq. (4) as a funtion of t for h�i=0:1; 0:2; 0:4; 0:6; 0:8 (top to bottom), =3 and 200-800 samples. Dashed line: the asymptoti hEi=N for h�i=0:1. Inset:  as a funtion ofh�i. (b) K2hEi=N as a funtion of h�i for  = 3 (), 4 (�), 5 (�) and 1000 samples.Line: large K. Inset: K2hEi=N as a funtion of time for random sequential update ofEqs. (8-9). Symbols: as in (b) for h�i = 0:02; 0:1; 0:5 (top to bottom).Let (Aij ; Bij) � (�FV (yij jTj)=�yij ; �2FV (yij jTj)=�y2ij) be the message passedfrom node j to i; using Eq.(6), the reursion relation of the messages beomeAij  ��ij ; Bij  �(��ij)24Xk 6=iAjk(�00jk +Bjk)�135�1 ;�ij = min "Pk 6=iAjk [yjk � (�0jk +Ajk)(�00jk +Bjk)�1℄� yij + �jPk 6=iAjk(�00jk +Bjk)�1 ; 0# ; (8)with �0jk and �00jk representing the �rst and seond derivatives of �(y) at y = yjkrespetively. The forward passing of the message from node j to i is followed bya bakward message from node j to k for updating the urrents yjk aording toyjk  yjk � �0jk +Ajk + �ij�00jk +Bjk : (9)We note that Eqs. (8-9) di�er from onventional message-passing algorithmsin that bakward messages of the urrents are present. As a onsequene of repre-senting the messages by the �rst and seond derivatives, the bakward messagesserve to inform the desendent nodes of the partiular arguments they should usein alulating the derivatives for sending the next messages. Furthermore, theriterion that yij=�yji provides a hek for the onvergene of the algorithm.The message-passing equations further enable us to study the properties ofthe optimized networks in the limit of large K � �1, and hene onsider theonvergene to this limit when the onnetivity inreases. Given an arbitrary



7ost funtion � with nonvanishing seond derivatives for all arguments, Eq. (6)onverges in the large K limit to the steady-state resultsAij=max0� 1K 24Xk 6=i AjkAjk��j35 ; 01A ; Bij� 1K : (10)Then,Pk 6=iAjkAjk beomes self-averaging and equal toKmA, wheremA�K�1is the mean of the messages Aij given byKmA = I1(KmA); In(x) = h�(x � �)(x � �)ni�: (11)Thus, yij � �i � K�1. The physial piture of this saling behavior is thatthe urrent drawn by a node is shared among the K desendent nodes. Afterresaling, quantities suh asK2hEi=N , P (Ky)=K and P (K�)=K beome purelydependent on the apaity distribution �(�). For instane, we �ndK2hEiN = I2(KmA)� I1(KmA)2; (12)P (Ky)K = Z d�1�(�1) Z d�2�(�2)Æ���(KmA � �1)�(KmA � �1)�(KmA � �2)�(KmA � �2)���Ky�: (13)For inreasing �nite values of K, Fig. 1(b) shows the ommon trend of K2hEi=Ndereasing with h�i exponentially, and gradually approahing the large K limit.The saling property extends to the optimization dynamis (Fig. 1(b) inset). Asshown in Fig. 2(a), the urrent distribution P (Ky)=K onsists of a delta funtionomponent at y=0 and a ontinuous omponent, whose breadth dereases withh�i. Remarkably, the distributions for di�erent onnetivities ollapse almostperfetly after the urrents are resaled by K�1, with a very mild dependeneon K and gradually approahing the large K limit. As shown in the inset ofFig. 2(a), the fration of idle links inreases with h�i. Hene the urrent-arryinglinks form a perolating luster at a low h�i, and breaks into isolated lusters ata high h�i. The fration has a weak dependene on the onnetivity, on�rmingthe almost universal distributions resaled for di�erent K.Sine the urrent on a link sales as K�1, the alloated resoure of a nodeshould have a weak dependene on the onnetivity. De�ning the resoure atnode i by ri�Pj Aijyij + �i, the resoure distribution P (r) shown in Fig. 2(b)on�rms this behavior even at low onnetivities. The fration of nodes with un-saturated apaity onstraints inreases with the average apaity, and is weaklydependent on the onnetivity (Fig. 2(b) inset). Hene the saturated nodes forma perolating luster at a low average apaity, and breaks into isolated lustersat a high average apaity. It is interesting to note that at the average apaityof 0.45, below whih a plateau starts to develop in the relaxation rate of thereursion relation, Eq. (6), the fration of unsaturated nodes is about 0.53, loseto the theoretial perolation threshold of 0.5 for =3.
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Fig. 2. Results for N = 1000, �(y) = y2=2, W =1 and 1000 samples. (a) The urrentdistribution P (Ky)=K for h�i = 0:02; 0:5; 1, and  = 3 (solid lines), 4 (dotted lines),5 (dot-dashed lines), large K (long dashed lines). Inset: P (y=0) as a funtion of h�ifor  = 3 (), 4 (�), 5 (�), large K (line). (b) The resoure distribution P (r) forh�i= 0:02; 0:1; 0:5, large K. Symbols: as in (a). Inset: P (r > 0) as a funtion of h�i.Symbols: as in the inset of (a).5 Distributed algorithms: prie iterationAn alternative distributed algorithm an be obtained by iterating the hemialpotentials of the node. Introduing Lagrange multipliers �i for the apaityonstraints in Eq. (1) we get, for the ase of unonstrained links,L =X(ij Aij�(yij) +Xi 0�Xj Aijyij + �i1A : (14)The extremum ondition yieldsyij = �0�1(�j � �i); (15)and using the K�uhn-Tuker ondition, �i an be solved in terms of �j of itsneighbours, namely, �i = min(g�1i (0); 0), wheregi(x) =Xj Aij�0�1(�j � x) + �i: (16)This provides a loal iterative method for the optimization problem. We may in-terpret this algorithm as a prie iteration sheme, by noting that the Lagrangianan be written as L =P(ij)AijLij + onstant, whereLij = �(yij) + (�i � �j)yij : (17)Therefore, the problem an be deomposed into independent optimization sub-problems, eah for a urrent on a link. �i is the storage prie at node i, and



9Eq. (17) involves balaning the transportation ost on the link, and the storageost at node i less that at node j, yielding the optimal solution given by Eq. (15).This provides a priing sheme for the individual links to optimize, whih simul-taneously optimize the global performane [12℄. Simulations show that it yieldsexellent agreement with the theory Eq. (6) and message-passing Eqs. (8-9).6 The unsatis�able aseFor links with small bandwidthW , or nodes with negative average apaity, thereexist nodes whih violate the apaity onstraint Eq. (1). In these unsatis�ableases, it is expedient to relax the onstraints and searh for optimal solutionswhih limit the violations. Hene we onsider the energy funtionE =Xij Aij�(yij) +Xi �2i2 ; (18)where �i � max(�Pj Aijyij � �i; 0) is the violation at node i. The analysisand the distributed algorithms for the satis�able ase an be generalized in thepresent ontext as follows.The reursion relation Eq. (6) in the Bethe approximation is modi�ed toFV (yjT) = minfykg"12  � �1Xk=1 yk + y � �V (T)!2� � �1Xk=1 yk + y � �V (T)!+ �1Xk=1 (FV (ykjTk) + �(yk))#� Fav: (19)The message-passing algorithm now beomesAij  ��ij ;Bij  8<:1 +Xk 6=i Ajk(�00jk + Bjk)�1� "W � �����yjk � �0jk +Ajk + �ij�00jk +Bjk �����#9=;�1 ;(20)where �ij = min(g�1ij (0); 0), withgij(x) =Xk 6=i Ajk max��W;min �W;�0�1(�jk � x)�	� yij + �j � x; (21)The bakward message is given byyjk  max"�W;min W; yjk � �0jk +Ajk + �ij�00jk +Bjk !# : (22)The prie iteration algorithm now uses �i = min(g�1i (0); 0), wheregi(x) =Xj Aij max��W;min �W;�0�1(�j � x)�	+ �i � x; (23)



10 Figure 3(a) shows the simulation results when h�i varies. The average energyinreases rapidly when h�i enters the unsatis�able regime, and the results ob-tained by the theory, the message-passing and prie iteration algorithms showexellent agreement. There are 3 types of links in the network: idle (jyij j = 0),unsaturated (jyij j < W ) and saturated (jyij j =W ). When h�i enters the unsat-is�able regime, the fration of idle links vanishes rapidly, while that of saturatedlinks inreases to a steady level, implying that more resoures are transported inthe links in response to the networkwide demand on resoures (Fig. 3(a) inset).In the limit of very negative h�i, almost all nodes have violations, and thelower limit of 0 for � beomes irrelevant, that is, �i = �Pj Aijyij � �i. Thisredues Eq. (18) to a sum of independent optimization problems, one for eahurrent variable. Thus, the optimal solution of yij depends only on �j � �i.The average energy and the fration of saturated links an then be determinedfrom the distribution �(�). The theoretial preditions are onsistent with thesimulation results in Fig. 3(a) and inset.Figure 3(b) shows the simulation results when W varies. For large valuesof W , the average energy is e�etively onstant, sine the link bandwidth on-straints beome irrelevant. On the other hand, when W dereases, the averageenergy inreases rapidly, sine the links beome inreasingly ine�etive in allo-ating resoures in the network.As shown in Fig. 3(b) inset, the fration of saturated links inreases when Wdereases. It is interesting to note that the fration of idle links inreases whenW dereases, ontrary to the expetation that more links are involved in resoureprovision. This an be attributed to what we all a one-step e�et. If the links inthe network were unonstrained, nodes with suÆiently large violations wouldhave drawn urrents from distant neighbours, ausing urrents to ow throughmany intermediate nodes. However, when W is small, the urrents drawn bynodes with violations from their nearest neighbours may have already saturatedthe links, and there is no use to draw urrents from further neighbours. In thelimit of vanishing W , the links are exlusively either idle or saturated. In thislimit, a link is idle only when both nodes at its ends have positive �. Hene thefration of idle links is fidle = 1 � fsat = [P (� > 0)℄2. Sine the transportationost is negligible in this limit, the ontribution to the average energy only omesfrom the violated nodes, given by hEi=N = h�(��)�2=2i�. These preditionsare onsistent with the simulation results in Fig. 3(b).7 ConlusionWe have studied a prototype problem of resoure alloation on sparsely on-neted networks. The resultant reursion relation leads to a message-passing al-gorithm and a prie iteration algorithm for optimizing the average energy, whihsigni�antly redues the omputational omplexity of the global optimizationtask and is suitable for online distributive ontrol. The suggested 2-parameterapproximation produes results with exellent agreement with the original re-ursion relation. The Bethe approximation also reveals the saling properties of
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