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Abstract. The optimization of resource allocation in sparse networks
with real variables is studied using methods of statistical physics. Ef-
ficient distributed algorithms are devised on the basis of insight gained
from the analysis and are examined using numerical simulations, showing
excellent performance and full agreement with the theoretical results.

1 Introduction

The optimization of resource allocation is a well known problem in the area of
distributed computing [1, 2] to which significant effort has been dedicated within
the computer science community. It is representative of a large class of problems
in many other areas where a large number of nodes are required to balance their
resources and redistribute tasks, such as reducing internet traffic congestion and
streamlining network flows of commodities [3,4]. Many attempts were made
in the computer science community, to find practical heuristic solutions to the
distribution of computational load between computers connected by networks.

The traditional approach to network optimization is to adopt computation-
ally demanding global optimization techniques, such as linear or quadratic pro-
gramming [5]. On the other hand, message-passing approaches have gained re-
cent success in problems with discrete variables connected by network struc-
tures, such as error-correcting codes [6] and probabilistic inference [7]. These
approaches have the potential to solve global optimization problems via local
updates, thereby reducing the computational complexity. For example, the com-
putational complexity of quadratic programming for the load balancing task typ-
ically scales as the cube of the system size, whereas capitalizing on the network
topology underlying the connectivity of the variables, message-passing scales
linearly with the system size. An even more important advantage of message
passing techniques, relevant to practical implementation, is their distributive
nature. Since they do not require a global optimizer, they are particularly suit-
able for distributive control in large or evolving networks. While most analyses
so far have focused on cases of discrete variables, here we explore networks of
continuous variables.

To study the principles and ingredients in realizing global optimization through
distributed algorithms, we will examine here, as a vehicle, the task of resource
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allocation. We address a generic version of the problem, which is represented by
nodes of some computational power that should carry out tasks. Both computa-
tional powers and tasks will be chosen at random from some arbitrary distribu-
tion. The nodes are located on a randomly chosen sparse network of some given
connectivity. The goal is to migrate tasks on the network such that demands
will be satisfied while minimizing the migration of (sub-)tasks. This formulation
of the problem is reminiscent of many disordered systems in physics [8], and
methods of statistical physics can be used to generate insights. Early and partial
work in this direction was presented in [9].

In Section 2, we analyze the problem using the Bethe approximation of sta-
tistical mechanics. We then present numerical results in Section 3, and derive
new distributed algorithms on the basis of the analysis in Sections 4 and 5. The
study is extended to the unsatisfiable case in Section 18. We conclude the paper
in Section 7.

2 The theoretical framework

We consider a typical resource allocation task on a sparse network of N nodes,
labelled ¢ = 1, .., N. Each node i is randomly connected to ¢ other nodes', and
has a capacity A; randomly drawn from a distribution p();). The objective is to
migrate tasks between nodes such that each node will be capable of carrying out
its tasks. The current y;; = —y;; drawn from node j to 4 is a continuous variable
aimed at satisfying the node capacity constraints for all 7,

ZAijyij +X >0, (1)
J

where A;; =1 or 0 for connected or unconnected node pairs ¢ and j, respectively.
The currents y;; satisfy the link bandwidth constraints —W < y;; < W for all
connected pairs with A;; = 1.

We consider the load balancing task of minimizing the energy function (cost)
E = Z(ij) Aij#(yij), where the summation (i) runs over all pairs of nodes,
subject to the constraints (1); ¢(y) is a general function of the current y. For
load balancing tasks, ¢(y) is typically a convex function, which will be assumed
in our study.

For sufficiently large W and capacity distributions with non-negative average
A, the optimal solution of the problem exists for sufficiently large networks.
We call this the satisfiable case, which will be considered in Sections 3 to 5
for unconstrained links (W = oo) and (\) > 0. The unsatisfiable case will be
considered in Section 18.

! Although we focus here on graphs of fixed connectivity, one can easily accommodate
any connectivity profile within the same framework; the algorithms presented later
are completely general.



The analysis of the network is done by introducing the free energy F =
—T1n Z, for a temperature T' = 3!, where Z, is the partition function

w
o= (H) /—W dy J1O | D Aijwis + 2 | exv | =5 ; Aiolyi) | - (2)
ij i j ”

The @ function returns 1 for a non-negative argument and 0 otherwise.

When the connectivity ¢ is low, the probability of finding a loop of finite
length on the graph is low, and the Bethe approximation well describes the
local environment of a node. In the approximation, a node is connected to ¢
branches in a tree structure, and the correlations among the branches of the
tree are neglected. In each branch, nodes are arranged in generations. A node
is connected to an ancestor node of the previous generation, and another ¢ — 1
descendent nodes of the next generation. Thus, the node is the vertex of the tree
structure formed by its descendents.

Consider a vertex V(T) of a tree T having a capacity Ay (r), and a current
y is drawn from the vertex by its ancestor. One can write an expression for the
free energy F'(y|T) as a function of the free energies F'(yx|T}) of its descendants,
that branch out from this vertex

F(y|T) = —Tln{ﬁ( dyk> <Zyk—y+)\v>

X exp [—62 (yx|Tx) + ¢(yk))] } (3)
k=1

where T}, represents the tree terminated at the k" descendent of the vertex. The
free energy can be considered as the sum of two parts, F'(y|T) = Nt Favt+Fv (y|T),
where Nt is the number of nodes in the tree T, F,, is the average free energy
per node, and Fy (y|T) is referred to as the vertex free energy. Note that when
a vertex is added to a tree, there is a change in the free energy due to the
added vertex. Since the number of nodes increases by 1, the vertex free energy is
obtained by subtracting the free energy change by the average free energy. This
allows us to obtain the recursion relation

c—1 w c—1
Fy(y|T) = —TIH{H (/_W dyk) e (Z Y —y + /\V(T)>

k=1 k=1

X exp l—ﬂi Fyv (yx|Ty) +¢(yk))]} Fy . (4)
k=1



The average free energy per node is obtained by considering the average increase
in the total free energy when a node is added to the network,

e ([ ) ()
) -

where Ay is the capacity of the vertex V' fed by ¢ trees T4, ..., T,, and (e), rep-
resents the average over the distribution p(\). For optimization, we take the zero
temperature limit of Eq. (4), in which the free energy reduces to the minimum
energy, yielding

X exp [—B Z (Fv (yx|Tx) + o(yr))
k=1

c—1
Fy (y|T) = _, min > (Fv (uelTh) + 6(yr)) | = Fav- (6)
{yr| 2521 ve—y+Av(T)>0} =1

These iterative equations can be directly linked to those obtained from a prin-
cipled Bayesian approximation, where the logarithms of the messages passed
between nodes are proportional to the vertex free energies.

The current distribution and the average free energy per link can be derived
by integrating the current 3’ in a link from one vertex to another, fed by the
trees Ty and Ts, respectively; the obtained expressions are P(y)={(d(y — y'))«
and (E)=(¢(y'))x where

(o), = <fdy’ exp [-8 (Fv (y/'|T1) + Fv (=y'|T2) + 6())] (°)> )
. Jdy'exp[—B (Fy (y'|T1) + Fv (—y'|T2) + ¢(y')] /

Before closing this section, we mention the alternative analysis of the problem
using the replica method [10, 11], which was successfully applied in the physics
of disordered systems. The derivation is rather involved (details will be provided
elsewhere), but gives rise to the same recursive equation Eq. (4) as in the Bethe
approximation.

3 Numerical solution

The Bethe approximation provides a theoretical tool to analyze the properties
of optimized networks. The solution of Eq. (6) is free from finite size effects
inherent in Monte Carlo simulations, and can be obtained numerically. Since the
vertex free energy of a node depends on its own capacity and the disordered
configuration of its descendants, we generate 1000 nodes at each iteration of
Eq. (6), with capacities randomly drawn from the distribution p()), each being
fed by ¢—1 nodes randomly drawn from the previous iteration.

We have discretized the vertex free energies Fy (y|T) function into a vector,

whose "' component takes the value Fy (y;|T). To speed up the optimization



search at each node, we first find the vertez saturation current drawn from a node
such that: (a) the capacity of the node is just used up; (b) the current drawn
by each of its descendant nodes is just enough to saturate its own capacity con-
straint. At this saturation point, we can separately optimize the current drawn
by each descendant node, providing a convenient starting point for searching the
optimal solutions.

To compute the average energy, we randomly draw 2 nodes, compute the
optimal current flowing between them, and repeat the process 1000 times to
obtain the average. Figure 1(a) shows the results as a function of iteration step
t, for a Gaussian capacity distribution p(A) with variance 1 and average ().
Each iteration corresponds to adding one extra generation to the tree structure,
such that the iterative process corresponds to approximating the network by
an increasingly extensive tree. We observe that after an initial rise with itera-
tion steps, the average energies converge to steady-state values, at a rate which
increases with the average capacity.

To study the convergence rate of the iterations, we fit the average energy at
iteration step t using (E(t) — E(oc)) ~ exp(—~t) in the asymptotic regime. As
shown in the inset of Fig. 1(a), the relaxation rate v increases with the average
capacity. It is interesting to note that a cusp exists at the average capacity of
about 0.45. Below that value, convergence of the iteration is slow, since the
average energy curve starts to develop a plateau before the final convergence.
On the other hand, the plateau disappears and the convergence is fast above
the cusp. The slowdown of convergence below the cusp is probably due to the
appearance of increasingly large clusters of nonzero currents on the network,
since clusters of nodes with negative capacities become increasingly extensive,
and need to draw currents from increasingly extensive regions of nodes with
excess capacities to satisfy the demand.

4 Distributed algorithms: message-passing

The local nature of the recursion relation Eq. (6) points to the possibility that the
network optimization can be solved by local iterative approaches. However, in
contrast to other message-passing algorithms which pass conditional probability
estimates of discrete variables to neighboring nodes, the messages in the present
context are more complex, since they are functions Fy (y|T) of the current y. We
simplify the message to 2 parameters, namely, the first and second derivatives of
the vertex free energies. For the quadratic load balancing task, it can be shown
that a self-consistent solution of the recursion relation, Eq. (6), consists of vertex
free energies which are piecewise quadratic with continuous slopes. This makes
the 2-parameter message a very precise approximation.
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Fig. 1. Results for N=1000, ¢(y) = y>/2 and W = oco. (a) (E)/N obtained by iterating
Eq. (4) as a function of ¢ for (A\)=0.1,0.2,0.4,0.6,0.8 (top to bottom), c=3 and 200-
800 samples. Dashed line: the asymptotic (E)/N for (A\)=0.1. Inset: - as a function of
(A). (b) K*(E)/N as a function of ()) for ¢ =3 (Q), 4 (O), 5 (¢) and 1000 samples.
Line: large K. Inset: K?(E)/N as a function of time for random sequential update of
Eqgs. (8-9). Symbols: as in (b) for (\) = 0.02,0.1,0.5 (top to bottom).

Let (Aij, Bij) = (0Fv (yi;1T;)/0yij, 0° Fy (yi;|T;)/dy;;) be the message passed
from node j to 7; using Eq.(6), the recursion relation of the messages become

-1
Aij < —pij, Bij « O(—pij) | > Ajr(¢ly + Bjx) ™'
ki
ki Ak lyin — (@, + Aj) (@ + Bjx) 7' = yij + X 0
Zk;ﬁi Ajk (¢;,k + Bjk)_l ’

[ij = min

; (8)

with ¢, and ¢} representing the first and second derivatives of ¢(y) at y = y;i
respectively. The forward passing of the message from node j to i is followed by
a backward message from node j to k for updating the currents y;; according to

P + Ajk + i

(9)

Yjk < Yjk —

We note that Eqgs. (8-9) differ from conventional message-passing algorithms
in that backward messages of the currents are present. As a consequence of repre-
senting the messages by the first and second derivatives, the backward messages
serve to inform the descendent nodes of the particular arguments they should use
in calculating the derivatives for sending the next messages. Furthermore, the
criterion that y;; = —y;; provides a check for the convergence of the algorithm.

The message-passing equations further enable us to study the properties of
the optimized networks in the limit of large K =c¢—1, and hence consider the
convergence to this limit when the connectivity increases. Given an arbitrary



cost function ¢ with nonvanishing second derivatives for all arguments, Eq. (6)
converges in the large K limit to the steady-state results

1 1
Aij:max E ZAjkAjk_Aj ,0 s BijNE. (10)

ki

Then, Zk# Aji Aj1, becomes self-averaging and equal to Km 4, where m 4 ~ K ~*
is the mean of the messages A;; given by

Kma=15L(Kma); In(z)=(0(x—N(x—N")\. (11)

Thus, y;; ~ u; ~ K. The physical picture of this scaling behavior is that
the current drawn by a node is shared among the K descendent nodes. After
rescaling, quantities such as K*>(E)/N, P(Ky)/K and P(Ku)/K become purely
dependent on the capacity distribution p(\). For instance, we find

KB ha(sma) = 1 (1cma, 12)
PEY [ o) [ drapO)s((Kma = 2@ (Kma ~ )

—(Kma — X2)0(Kma — X2)| — Ky). (13)

For increasing finite values of K, Fig. 1(b) shows the common trend of K?(E)/N
decreasing with ()\) exponentially, and gradually approaching the large K limit.
The scaling property extends to the optimization dynamics (Fig. 1(b) inset). As
shown in Fig. 2(a), the current distribution P(Ky)/K consists of a delta function
component at y=0 and a continuous component, whose breadth decreases with
(M\). Remarkably, the distributions for different connectivities collapse almost
perfectly after the currents are rescaled by K ', with a very mild dependence
on K and gradually approaching the large K limit. As shown in the inset of
Fig. 2(a), the fraction of idle links increases with (A). Hence the current-carrying
links form a percolating cluster at a low (), and breaks into isolated clusters at
a high (A). The fraction has a weak dependence on the connectivity, confirming
the almost universal distributions rescaled for different K.

Since the current on a link scales as K !, the allocated resource of a node
should have a weak dependence on the connectivity. Defining the resource at
node i by r; =3, Aijyij + Ai, the resource distribution P(r) shown in Fig. 2(b)
confirms this behavior even at low connectivities. The fraction of nodes with un-
saturated capacity constraints increases with the average capacity, and is weakly
dependent on the connectivity (Fig. 2(b) inset). Hence the saturated nodes form
a percolating cluster at a low average capacity, and breaks into isolated clusters
at a high average capacity. It is interesting to note that at the average capacity
of 0.45, below which a plateau starts to develop in the relaxation rate of the
recursion relation, Eq. (6), the fraction of unsaturated nodes is about 0.53, close
to the theoretical percolation threshold of 0.5 for ¢=3.
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Fig. 2. Results for N = 1000, ¢(y) = y*/2, W = oo and 1000 samples. (a) The current
distribution P(Ky)/K for (A) =0.02,0.5,1, and ¢ =3 (solid lines), 4 (dotted lines),
5 (dot-dashed lines), large K (long dashed lines). Inset: P(y=0) as a function of ()
for ¢ =3 (), 4 (O), 5 (0), large K (line). (b) The resource distribution P(r) for
(M) =0.02,0.1,0.5, large K. Symbols: as in (a). Inset: P(r > 0) as a function of (\).
Symbols: as in the inset of (a).

5 Distributed algorithms: price iteration

An alternative distributed algorithm can be obtained by iterating the chemical
potentials of the node. Introducing Lagrange multipliers pu; for the capacity
constraints in Eq. (1) we get, for the case of unconstrained links,

L= Aydly) + > | Y Ay + i |- (14)
(ij i J

The extremum condition yields

yij = &'y — pa) (15)

and using the Kiihn-Tucker condition, y; can be solved in terms of pu; of its
neighbours, namely, y; = min(g;l(O) 0), where

Y

gi(z) = Z Aijd' (g — ) + N (16)

This provides a local iterative method for the optimization problem. We may in-
terpret this algorithm as a price iteration scheme, by noting that the Lagrangian
can be written as L = ),y A;; L;; + constant, where

Lij = ¢(ys5) + (s — 145) Y55 (17)

Therefore, the problem can be decomposed into independent optimization sub-
problems, each for a current on a link. u; is the storage price at node i, and



Eq. (17) involves balancing the transportation cost on the link, and the storage
cost at node 7 less that at node j, yielding the optimal solution given by Eq. (15).
This provides a pricing scheme for the individual links to optimize, which simul-
taneously optimize the global performance [12]. Simulations show that it yields
excellent agreement with the theory Eq. (6) and message-passing Eqs. (8-9).

6 The unsatisfiable case

For links with small bandwidth W, or nodes with negative average capacity, there
exist nodes which violate the capacity constraint Eq. (1). In these unsatisfiable
cases, it is expedient to relax the constraints and search for optimal solutions
which limit the violations. Hence we consider the energy function

2
E = E Aijd(yij) + E %, (18)
i i

where §; = max(—)_; Aijyi; — i, 0) is the violation at node i. The analysis
and the distributed algorithms for the satisfiable case can be generalized in the
present, context as follows.

The recursion relation Eq. (6) in the Bethe approximation is modified to

2
. 1 c—1 c—1
Fy(y|T) = mm[i <_Zyk+y_>\V(T)> © <_Zyk+y_>\V(T)
{y} k=1 k=1
c—1

+ > (Fv(ylTe) + ¢(ui)

k=1

- Fav- (19)

The message-passing algorithm now becomes
Aij = —pij)

D+ Aji + i

ik — 20
ka ;lk +Bjk (/ )

B;j + 1+2Ajk(¢;lk -I-Bjk)71@ [W—
ki

where p;; = min(gigl(()), 0), with

gij(z) = Z Ajr max {—W, min [W, ¢y — 1’)]} —yij + A -, (21)

ki
The backward message is given by
e+ Ak + i
Yjk ¢ max [—W, min (W, Yk — Wﬂ . (22)
ik Jk

The price iteration algorithm now uses y; = min(g; '(0),0), where

gi(x) = Z Ajj max { =W, min [W,¢'~" (; — 2)] } + \i — =, (23)

J
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Figure 3(a) shows the simulation results when (\) varies. The average energy
increases rapidly when (\) enters the unsatisfiable regime, and the results ob-
tained by the theory, the message-passing and price iteration algorithms show
excellent agreement. There are 3 types of links in the network: idle (|y;;| = 0),
unsaturated (|y;;| < W) and saturated (|y;;| = W). When (\) enters the unsat-
isfiable regime, the fraction of idle links vanishes rapidly, while that of saturated
links increases to a steady level, implying that more resources are transported in
the links in response to the networkwide demand on resources (Fig. 3(a) inset).

In the limit of very negative (\), almost all nodes have violations, and the
lower limit of 0 for & becomes irrelevant, that is, £ = — Zj Aijyi; — As. This
reduces Eq. (18) to a sum of independent optimization problems, one for each
current variable. Thus, the optimal solution of y;; depends only on A; — A;.
The average energy and the fraction of saturated links can then be determined
from the distribution p(A). The theoretical predictions are consistent with the
simulation results in Fig. 3(a) and inset.

Figure 3(b) shows the simulation results when W varies. For large values
of W, the average energy is effectively constant, since the link bandwidth con-
straints become irrelevant. On the other hand, when W decreases, the average
energy increases rapidly, since the links become increasingly ineffective in allo-
cating resources in the network.

As shown in Fig. 3(b) inset, the fraction of saturated links increases when W
decreases. It is interesting to note that the fraction of idle links increases when
W decreases, contrary to the expectation that more links are involved in resource
provision. This can be attributed to what we call a one-step effect. If the links in
the network were unconstrained, nodes with sufficiently large violations would
have drawn currents from distant neighbours, causing currents to flow through
many intermediate nodes. However, when W is small, the currents drawn by
nodes with violations from their nearest neighbours may have already saturated
the links, and there is no use to draw currents from further neighbours. In the
limit of vanishing W, the links are exclusively either idle or saturated. In this
limit, a link is idle only when both nodes at its ends have positive A\. Hence the
fraction of idle links is figle = 1 — fsat = [P(A > 0)]?. Since the transportation
cost is negligible in this limit, the contribution to the average energy only comes
from the violated nodes, given by (E)/N = (©(=X)A?/2)x. These predictions
are consistent with the simulation results in Fig. 3(b).

7 Conclusion

We have studied a prototype problem of resource allocation on sparsely con-
nected networks. The resultant recursion relation leads to a message-passing al-
gorithm and a price iteration algorithm for optimizing the average energy, which
significantly reduces the computational complexity of the global optimization
task and is suitable for online distributive control. The suggested 2-parameter
approximation produces results with excellent agreement with the original re-
cursion relation. The Bethe approximation also reveals the scaling properties of
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Fig. 3. Results for N = 1000, ¢ = 3, ¢ = 0.05y” and 100 samples. (a) (E)/N as a
function of (A) for W = 1. Symbols: Bethe approximation (+), message-passing (A),
price iteration (). Dashed line: theoretical limit for largely negative (\). Inset: the
fraction of idle, unsaturated and saturated links as a function of (A) for W = 1; the
vertical height of each region for a given (A) corresponds to the respective fraction.
Symbol: Theoretical limit of 1 minus the fraction of saturated links for largely negative
(M) (o). (b) (E)/N as a function of W for (A) = 0. Symbols: message-passing (A), price
iteration (), W — 0 theoretical limit (e). Line: exponential fit for small values of W.
Inset: the fraction of idle, unsaturated and saturated links as a function of W for ().
Symbol: W — 0 theoretical limit of the fraction of idle links (e).

this model, showing that the resource distribution on the nodes depends princi-
pally on the networkwide availability of resources, and depends only weakly on
the connectivity. Links share the task of resource provision, leading to current
distributions that are almost universally dependent on the resource availability
after rescaling.

While the analysis focused on fixed connectivity and zero temperature for
optimization, it can accommodate any connectivity profile and temperature pa-
rameter and may be used for analyzing a range of inference problems besides op-
timization. Consider, for instance, an energy function (cost) E=3 ;) Aijé(yi; +
> ¥(Xi{yij|Aij = 1}), where A; is a quenched variable defined on node i. In
the context of probabilistic inference, y;; may represent the coupling between
observables in nodes j and i, ¢(y;;) may correspond to the logarithm of the
prior distribution of y;;, and ¥ (X;, {yij|Ai; =1}) the logarithm of the likelihood
of the observables );. Both analysis and algorithm extend the use of current
message-passing techniques to inference in problems with continuous variables.
These advances open up a rich area for further investigations with many poten-
tial applications in optimization and inference.
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