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ien
e and Te
hnologyClear Water Bay, Hong Kong, China2NCRG, Aston University, Birmingham B4 7ET, UKphkywong�ust.hk, phbill�ust.hk, d.saad�aston.a
.ukAbstra
t. The optimization of resour
e allo
ation in sparse networkswith real variables is studied using methods of statisti
al physi
s. Ef-�
ient distributed algorithms are devised on the basis of insight gainedfrom the analysis and are examined using numeri
al simulations, showingex
ellent performan
e and full agreement with the theoreti
al results.1 Introdu
tionThe optimization of resour
e allo
ation is a well known problem in the area ofdistributed 
omputing [1, 2℄ to whi
h signi�
ant e�ort has been dedi
ated withinthe 
omputer s
ien
e 
ommunity. It is representative of a large 
lass of problemsin many other areas where a large number of nodes are required to balan
e theirresour
es and redistribute tasks, su
h as redu
ing internet traÆ
 
ongestion andstreamlining network 
ows of 
ommodities [3, 4℄. Many attempts were madein the 
omputer s
ien
e 
ommunity, to �nd pra
ti
al heuristi
 solutions to thedistribution of 
omputational load between 
omputers 
onne
ted by networks.The traditional approa
h to network optimization is to adopt 
omputation-ally demanding global optimization te
hniques, su
h as linear or quadrati
 pro-gramming [5℄. On the other hand, message-passing approa
hes have gained re-
ent su

ess in problems with dis
rete variables 
onne
ted by network stru
-tures, su
h as error-
orre
ting 
odes [6℄ and probabilisti
 inferen
e [7℄. Theseapproa
hes have the potential to solve global optimization problems via lo
alupdates, thereby redu
ing the 
omputational 
omplexity. For example, the 
om-putational 
omplexity of quadrati
 programming for the load balan
ing task typ-i
ally s
ales as the 
ube of the system size, whereas 
apitalizing on the networktopology underlying the 
onne
tivity of the variables, message-passing s
aleslinearly with the system size. An even more important advantage of messagepassing te
hniques, relevant to pra
ti
al implementation, is their distributivenature. Sin
e they do not require a global optimizer, they are parti
ularly suit-able for distributive 
ontrol in large or evolving networks. While most analysesso far have fo
used on 
ases of dis
rete variables, here we explore networks of
ontinuous variables.To study the prin
iples and ingredients in realizing global optimization throughdistributed algorithms, we will examine here, as a vehi
le, the task of resour
e
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2allo
ation. We address a generi
 version of the problem, whi
h is represented bynodes of some 
omputational power that should 
arry out tasks. Both 
omputa-tional powers and tasks will be 
hosen at random from some arbitrary distribu-tion. The nodes are lo
ated on a randomly 
hosen sparse network of some given
onne
tivity. The goal is to migrate tasks on the network su
h that demandswill be satis�ed while minimizing the migration of (sub-)tasks. This formulationof the problem is reminis
ent of many disordered systems in physi
s [8℄, andmethods of statisti
al physi
s 
an be used to generate insights. Early and partialwork in this dire
tion was presented in [9℄.In Se
tion 2, we analyze the problem using the Bethe approximation of sta-tisti
al me
hani
s. We then present numeri
al results in Se
tion 3, and derivenew distributed algorithms on the basis of the analysis in Se
tions 4 and 5. Thestudy is extended to the unsatis�able 
ase in Se
tion 18. We 
on
lude the paperin Se
tion 7.2 The theoreti
al frameworkWe 
onsider a typi
al resour
e allo
ation task on a sparse network of N nodes,labelled i = 1; ::; N . Ea
h node i is randomly 
onne
ted to 
 other nodes1, andhas a 
apa
ity �i randomly drawn from a distribution �(�i). The obje
tive is tomigrate tasks between nodes su
h that ea
h node will be 
apable of 
arrying outits tasks. The 
urrent yij � �yji drawn from node j to i is a 
ontinuous variableaimed at satisfying the node 
apa
ity 
onstraints for all i,Xj Aijyij + �i � 0 ; (1)where Aij=1 or 0 for 
onne
ted or un
onne
ted node pairs i and j, respe
tively.The 
urrents yij satisfy the link bandwidth 
onstraints �W � yij � W for all
onne
ted pairs with Aij = 1.We 
onsider the load balan
ing task of minimizing the energy fun
tion (
ost)E = P(ij)Aij�(yij), where the summation (ij) runs over all pairs of nodes,subje
t to the 
onstraints (1); �(y) is a general fun
tion of the 
urrent y. Forload balan
ing tasks, �(y) is typi
ally a 
onvex fun
tion, whi
h will be assumedin our study.For suÆ
iently largeW and 
apa
ity distributions with non-negative average�, the optimal solution of the problem exists for suÆ
iently large networks.We 
all this the satis�able 
ase, whi
h will be 
onsidered in Se
tions 3 to 5for un
onstrained links (W = 1) and h�i > 0. The unsatis�able 
ase will be
onsidered in Se
tion 18.1 Although we fo
us here on graphs of �xed 
onne
tivity, one 
an easily a

ommodateany 
onne
tivity pro�le within the same framework; the algorithms presented laterare 
ompletely general.



3The analysis of the network is done by introdu
ing the free energy F =�T lnZy for a temperature T � ��1, where Zy is the partition fun
tionZy =Y(ij) Z W�W dyijYi �0�Xj Aijyij + �i1A exp24��X(ij) Aij�(yij)35 : (2)The � fun
tion returns 1 for a non-negative argument and 0 otherwise.When the 
onne
tivity 
 is low, the probability of �nding a loop of �nitelength on the graph is low, and the Bethe approximation well des
ribes thelo
al environment of a node. In the approximation, a node is 
onne
ted to 
bran
hes in a tree stru
ture, and the 
orrelations among the bran
hes of thetree are negle
ted. In ea
h bran
h, nodes are arranged in generations. A nodeis 
onne
ted to an an
estor node of the previous generation, and another 
� 1des
endent nodes of the next generation. Thus, the node is the vertex of the treestru
ture formed by its des
endents.Consider a vertex V (T) of a tree T having a 
apa
ity �V (T), and a 
urrenty is drawn from the vertex by its an
estor. One 
an write an expression for thefree energy F (yjT) as a fun
tion of the free energies F (ykjTk) of its des
endants,that bran
h out from this vertexF (yjT) = �T ln(
�1Yk=1 Z W�W dyk!� 
�1Xk=1 yk� y +�V (T)!� exp"�� 
�1Xk=1 (F (ykjTk) + �(yk))#); (3)where Tk represents the tree terminated at the kth des
endent of the vertex. Thefree energy 
an be 
onsidered as the sum of two parts, F (yjT)=NTFav+FV (yjT),where NT is the number of nodes in the tree T, Fav is the average free energyper node, and FV (yjT) is referred to as the vertex free energy. Note that whena vertex is added to a tree, there is a 
hange in the free energy due to theadded vertex. Sin
e the number of nodes in
reases by 1, the vertex free energy isobtained by subtra
ting the free energy 
hange by the average free energy. Thisallows us to obtain the re
ursion relationFV (yjT) = �T ln(
�1Yk=1 Z W�W dyk!� 
�1Xk=1 yk � y + �V (T)!� exp"�� 
�1Xk=1 (FV (ykjTk) + �(yk))#)� Fav: (4)



4The average free energy per node is obtained by 
onsidering the average in
reasein the total free energy when a node is added to the network,Fav = �T*ln( 
Yk=1 Z W�W dyk!� 
Xk=1 yk + �V!� exp"�� 
Xk=1 (FV (ykjTk) + �(yk))#)+�; (5)where �V is the 
apa
ity of the vertex V fed by 
 trees T1; : : : ;T
, and h�i� rep-resents the average over the distribution �(�). For optimization, we take the zerotemperature limit of Eq. (4), in whi
h the free energy redu
es to the minimumenergy, yieldingFV (yjT) = minfykjP
�1k=1 yk�y+�V (T)�0g"
�1Xk=1 (FV (ykjTk) + �(yk))#� Fav: (6)These iterative equations 
an be dire
tly linked to those obtained from a prin-
ipled Bayesian approximation, where the logarithms of the messages passedbetween nodes are proportional to the vertex free energies.The 
urrent distribution and the average free energy per link 
an be derivedby integrating the 
urrent y0 in a link from one vertex to another, fed by thetrees T1 and T2, respe
tively; the obtained expressions are P (y)= hÆ(y � y0)i?and hEi=h�(y0)i? whereh�i? = �R dy0 exp [�� (FV (y0jT1) + FV (�y0jT2) + �(y0))℄ (�)R dy0 exp [�� (FV (y0jT1) + FV (�y0jT2) + �(y0))℄ �� : (7)Before 
losing this se
tion, we mention the alternative analysis of the problemusing the repli
a method [10, 11℄, whi
h was su

essfully applied in the physi
sof disordered systems. The derivation is rather involved (details will be providedelsewhere), but gives rise to the same re
ursive equation Eq. (4) as in the Betheapproximation.3 Numeri
al solutionThe Bethe approximation provides a theoreti
al tool to analyze the propertiesof optimized networks. The solution of Eq. (6) is free from �nite size e�e
tsinherent in Monte Carlo simulations, and 
an be obtained numeri
ally. Sin
e thevertex free energy of a node depends on its own 
apa
ity and the disordered
on�guration of its des
endants, we generate 1000 nodes at ea
h iteration ofEq. (6), with 
apa
ities randomly drawn from the distribution �(�), ea
h beingfed by 
�1 nodes randomly drawn from the previous iteration.We have dis
retized the vertex free energies FV (yjT) fun
tion into a ve
tor,whose ith 
omponent takes the value FV (yijT). To speed up the optimization



5sear
h at ea
h node, we �rst �nd the vertex saturation 
urrent drawn from a nodesu
h that: (a) the 
apa
ity of the node is just used up; (b) the 
urrent drawnby ea
h of its des
endant nodes is just enough to saturate its own 
apa
ity 
on-straint. At this saturation point, we 
an separately optimize the 
urrent drawnby ea
h des
endant node, providing a 
onvenient starting point for sear
hing theoptimal solutions.To 
ompute the average energy, we randomly draw 2 nodes, 
ompute theoptimal 
urrent 
owing between them, and repeat the pro
ess 1000 times toobtain the average. Figure 1(a) shows the results as a fun
tion of iteration stept, for a Gaussian 
apa
ity distribution �(�) with varian
e 1 and average h�i.Ea
h iteration 
orresponds to adding one extra generation to the tree stru
ture,su
h that the iterative pro
ess 
orresponds to approximating the network byan in
reasingly extensive tree. We observe that after an initial rise with itera-tion steps, the average energies 
onverge to steady-state values, at a rate whi
hin
reases with the average 
apa
ity.To study the 
onvergen
e rate of the iterations, we �t the average energy atiteration step t using hE(t)�E(1)i � exp(�
t) in the asymptoti
 regime. Asshown in the inset of Fig. 1(a), the relaxation rate 
 in
reases with the average
apa
ity. It is interesting to note that a 
usp exists at the average 
apa
ity ofabout 0.45. Below that value, 
onvergen
e of the iteration is slow, sin
e theaverage energy 
urve starts to develop a plateau before the �nal 
onvergen
e.On the other hand, the plateau disappears and the 
onvergen
e is fast abovethe 
usp. The slowdown of 
onvergen
e below the 
usp is probably due to theappearan
e of in
reasingly large 
lusters of nonzero 
urrents on the network,sin
e 
lusters of nodes with negative 
apa
ities be
ome in
reasingly extensive,and need to draw 
urrents from in
reasingly extensive regions of nodes withex
ess 
apa
ities to satisfy the demand.4 Distributed algorithms: message-passingThe lo
al nature of the re
ursion relation Eq. (6) points to the possibility that thenetwork optimization 
an be solved by lo
al iterative approa
hes. However, in
ontrast to other message-passing algorithms whi
h pass 
onditional probabilityestimates of dis
rete variables to neighboring nodes, the messages in the present
ontext are more 
omplex, sin
e they are fun
tions FV (yjT) of the 
urrent y. Wesimplify the message to 2 parameters, namely, the �rst and se
ond derivatives ofthe vertex free energies. For the quadrati
 load balan
ing task, it 
an be shownthat a self-
onsistent solution of the re
ursion relation, Eq. (6), 
onsists of vertexfree energies whi
h are pie
ewise quadrati
 with 
ontinuous slopes. This makesthe 2-parameter message a very pre
ise approximation.
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Fig. 1. Results for N=1000, �(y) = y2=2 andW =1. (a) hEi=N obtained by iteratingEq. (4) as a fun
tion of t for h�i=0:1; 0:2; 0:4; 0:6; 0:8 (top to bottom), 
=3 and 200-800 samples. Dashed line: the asymptoti
 hEi=N for h�i=0:1. Inset: 
 as a fun
tion ofh�i. (b) K2hEi=N as a fun
tion of h�i for 
 = 3 (
), 4 (�), 5 (�) and 1000 samples.Line: large K. Inset: K2hEi=N as a fun
tion of time for random sequential update ofEqs. (8-9). Symbols: as in (b) for h�i = 0:02; 0:1; 0:5 (top to bottom).Let (Aij ; Bij) � (�FV (yij jTj)=�yij ; �2FV (yij jTj)=�y2ij) be the message passedfrom node j to i; using Eq.(6), the re
ursion relation of the messages be
omeAij  ��ij ; Bij  �(��ij)24Xk 6=iAjk(�00jk +Bjk)�135�1 ;�ij = min "Pk 6=iAjk [yjk � (�0jk +Ajk)(�00jk +Bjk)�1℄� yij + �jPk 6=iAjk(�00jk +Bjk)�1 ; 0# ; (8)with �0jk and �00jk representing the �rst and se
ond derivatives of �(y) at y = yjkrespe
tively. The forward passing of the message from node j to i is followed bya ba
kward message from node j to k for updating the 
urrents yjk a

ording toyjk  yjk � �0jk +Ajk + �ij�00jk +Bjk : (9)We note that Eqs. (8-9) di�er from 
onventional message-passing algorithmsin that ba
kward messages of the 
urrents are present. As a 
onsequen
e of repre-senting the messages by the �rst and se
ond derivatives, the ba
kward messagesserve to inform the des
endent nodes of the parti
ular arguments they should usein 
al
ulating the derivatives for sending the next messages. Furthermore, the
riterion that yij=�yji provides a 
he
k for the 
onvergen
e of the algorithm.The message-passing equations further enable us to study the properties ofthe optimized networks in the limit of large K � 
�1, and hen
e 
onsider the
onvergen
e to this limit when the 
onne
tivity in
reases. Given an arbitrary
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ost fun
tion � with nonvanishing se
ond derivatives for all arguments, Eq. (6)
onverges in the large K limit to the steady-state resultsAij=max0� 1K 24Xk 6=i AjkAjk��j35 ; 01A ; Bij� 1K : (10)Then,Pk 6=iAjkAjk be
omes self-averaging and equal toKmA, wheremA�K�1is the mean of the messages Aij given byKmA = I1(KmA); In(x) = h�(x � �)(x � �)ni�: (11)Thus, yij � �i � K�1. The physi
al pi
ture of this s
aling behavior is thatthe 
urrent drawn by a node is shared among the K des
endent nodes. Afterres
aling, quantities su
h asK2hEi=N , P (Ky)=K and P (K�)=K be
ome purelydependent on the 
apa
ity distribution �(�). For instan
e, we �ndK2hEiN = I2(KmA)� I1(KmA)2; (12)P (Ky)K = Z d�1�(�1) Z d�2�(�2)Æ���(KmA � �1)�(KmA � �1)�(KmA � �2)�(KmA � �2)���Ky�: (13)For in
reasing �nite values of K, Fig. 1(b) shows the 
ommon trend of K2hEi=Nde
reasing with h�i exponentially, and gradually approa
hing the large K limit.The s
aling property extends to the optimization dynami
s (Fig. 1(b) inset). Asshown in Fig. 2(a), the 
urrent distribution P (Ky)=K 
onsists of a delta fun
tion
omponent at y=0 and a 
ontinuous 
omponent, whose breadth de
reases withh�i. Remarkably, the distributions for di�erent 
onne
tivities 
ollapse almostperfe
tly after the 
urrents are res
aled by K�1, with a very mild dependen
eon K and gradually approa
hing the large K limit. As shown in the inset ofFig. 2(a), the fra
tion of idle links in
reases with h�i. Hen
e the 
urrent-
arryinglinks form a per
olating 
luster at a low h�i, and breaks into isolated 
lusters ata high h�i. The fra
tion has a weak dependen
e on the 
onne
tivity, 
on�rmingthe almost universal distributions res
aled for di�erent K.Sin
e the 
urrent on a link s
ales as K�1, the allo
ated resour
e of a nodeshould have a weak dependen
e on the 
onne
tivity. De�ning the resour
e atnode i by ri�Pj Aijyij + �i, the resour
e distribution P (r) shown in Fig. 2(b)
on�rms this behavior even at low 
onne
tivities. The fra
tion of nodes with un-saturated 
apa
ity 
onstraints in
reases with the average 
apa
ity, and is weaklydependent on the 
onne
tivity (Fig. 2(b) inset). Hen
e the saturated nodes forma per
olating 
luster at a low average 
apa
ity, and breaks into isolated 
lustersat a high average 
apa
ity. It is interesting to note that at the average 
apa
ityof 0.45, below whi
h a plateau starts to develop in the relaxation rate of there
ursion relation, Eq. (6), the fra
tion of unsaturated nodes is about 0.53, 
loseto the theoreti
al per
olation threshold of 0.5 for 
=3.
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Fig. 2. Results for N = 1000, �(y) = y2=2, W =1 and 1000 samples. (a) The 
urrentdistribution P (Ky)=K for h�i = 0:02; 0:5; 1, and 
 = 3 (solid lines), 4 (dotted lines),5 (dot-dashed lines), large K (long dashed lines). Inset: P (y=0) as a fun
tion of h�ifor 
 = 3 (
), 4 (�), 5 (�), large K (line). (b) The resour
e distribution P (r) forh�i= 0:02; 0:1; 0:5, large K. Symbols: as in (a). Inset: P (r > 0) as a fun
tion of h�i.Symbols: as in the inset of (a).5 Distributed algorithms: pri
e iterationAn alternative distributed algorithm 
an be obtained by iterating the 
hemi
alpotentials of the node. Introdu
ing Lagrange multipliers �i for the 
apa
ity
onstraints in Eq. (1) we get, for the 
ase of un
onstrained links,L =X(ij Aij�(yij) +Xi 0�Xj Aijyij + �i1A : (14)The extremum 
ondition yieldsyij = �0�1(�j � �i); (15)and using the K�uhn-Tu
ker 
ondition, �i 
an be solved in terms of �j of itsneighbours, namely, �i = min(g�1i (0); 0), wheregi(x) =Xj Aij�0�1(�j � x) + �i: (16)This provides a lo
al iterative method for the optimization problem. We may in-terpret this algorithm as a pri
e iteration s
heme, by noting that the Lagrangian
an be written as L =P(ij)AijLij + 
onstant, whereLij = �(yij) + (�i � �j)yij : (17)Therefore, the problem 
an be de
omposed into independent optimization sub-problems, ea
h for a 
urrent on a link. �i is the storage pri
e at node i, and



9Eq. (17) involves balan
ing the transportation 
ost on the link, and the storage
ost at node i less that at node j, yielding the optimal solution given by Eq. (15).This provides a pri
ing s
heme for the individual links to optimize, whi
h simul-taneously optimize the global performan
e [12℄. Simulations show that it yieldsex
ellent agreement with the theory Eq. (6) and message-passing Eqs. (8-9).6 The unsatis�able 
aseFor links with small bandwidthW , or nodes with negative average 
apa
ity, thereexist nodes whi
h violate the 
apa
ity 
onstraint Eq. (1). In these unsatis�able
ases, it is expedient to relax the 
onstraints and sear
h for optimal solutionswhi
h limit the violations. Hen
e we 
onsider the energy fun
tionE =Xij Aij�(yij) +Xi �2i2 ; (18)where �i � max(�Pj Aijyij � �i; 0) is the violation at node i. The analysisand the distributed algorithms for the satis�able 
ase 
an be generalized in thepresent 
ontext as follows.The re
ursion relation Eq. (6) in the Bethe approximation is modi�ed toFV (yjT) = minfykg"12  � 
�1Xk=1 yk + y � �V (T)!2� � 
�1Xk=1 yk + y � �V (T)!+ 
�1Xk=1 (FV (ykjTk) + �(yk))#� Fav: (19)The message-passing algorithm now be
omesAij  ��ij ;Bij  8<:1 +Xk 6=i Ajk(�00jk + Bjk)�1� "W � �����yjk � �0jk +Ajk + �ij�00jk +Bjk �����#9=;�1 ;(20)where �ij = min(g�1ij (0); 0), withgij(x) =Xk 6=i Ajk max��W;min �W;�0�1(�jk � x)�	� yij + �j � x; (21)The ba
kward message is given byyjk  max"�W;min W; yjk � �0jk +Ajk + �ij�00jk +Bjk !# : (22)The pri
e iteration algorithm now uses �i = min(g�1i (0); 0), wheregi(x) =Xj Aij max��W;min �W;�0�1(�j � x)�	+ �i � x; (23)



10 Figure 3(a) shows the simulation results when h�i varies. The average energyin
reases rapidly when h�i enters the unsatis�able regime, and the results ob-tained by the theory, the message-passing and pri
e iteration algorithms showex
ellent agreement. There are 3 types of links in the network: idle (jyij j = 0),unsaturated (jyij j < W ) and saturated (jyij j =W ). When h�i enters the unsat-is�able regime, the fra
tion of idle links vanishes rapidly, while that of saturatedlinks in
reases to a steady level, implying that more resour
es are transported inthe links in response to the networkwide demand on resour
es (Fig. 3(a) inset).In the limit of very negative h�i, almost all nodes have violations, and thelower limit of 0 for � be
omes irrelevant, that is, �i = �Pj Aijyij � �i. Thisredu
es Eq. (18) to a sum of independent optimization problems, one for ea
h
urrent variable. Thus, the optimal solution of yij depends only on �j � �i.The average energy and the fra
tion of saturated links 
an then be determinedfrom the distribution �(�). The theoreti
al predi
tions are 
onsistent with thesimulation results in Fig. 3(a) and inset.Figure 3(b) shows the simulation results when W varies. For large valuesof W , the average energy is e�e
tively 
onstant, sin
e the link bandwidth 
on-straints be
ome irrelevant. On the other hand, when W de
reases, the averageenergy in
reases rapidly, sin
e the links be
ome in
reasingly ine�e
tive in allo-
ating resour
es in the network.As shown in Fig. 3(b) inset, the fra
tion of saturated links in
reases when Wde
reases. It is interesting to note that the fra
tion of idle links in
reases whenW de
reases, 
ontrary to the expe
tation that more links are involved in resour
eprovision. This 
an be attributed to what we 
all a one-step e�e
t. If the links inthe network were un
onstrained, nodes with suÆ
iently large violations wouldhave drawn 
urrents from distant neighbours, 
ausing 
urrents to 
ow throughmany intermediate nodes. However, when W is small, the 
urrents drawn bynodes with violations from their nearest neighbours may have already saturatedthe links, and there is no use to draw 
urrents from further neighbours. In thelimit of vanishing W , the links are ex
lusively either idle or saturated. In thislimit, a link is idle only when both nodes at its ends have positive �. Hen
e thefra
tion of idle links is fidle = 1 � fsat = [P (� > 0)℄2. Sin
e the transportation
ost is negligible in this limit, the 
ontribution to the average energy only 
omesfrom the violated nodes, given by hEi=N = h�(��)�2=2i�. These predi
tionsare 
onsistent with the simulation results in Fig. 3(b).7 Con
lusionWe have studied a prototype problem of resour
e allo
ation on sparsely 
on-ne
ted networks. The resultant re
ursion relation leads to a message-passing al-gorithm and a pri
e iteration algorithm for optimizing the average energy, whi
hsigni�
antly redu
es the 
omputational 
omplexity of the global optimizationtask and is suitable for online distributive 
ontrol. The suggested 2-parameterapproximation produ
es results with ex
ellent agreement with the original re-
ursion relation. The Bethe approximation also reveals the s
aling properties of
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Fig. 3. Results for N = 1000, 
 = 3, � = 0:05y2 and 100 samples. (a) hEi=N as afun
tion of h�i for W = 1. Symbols: Bethe approximation (+), message-passing (4),pri
e iteration (
). Dashed line: theoreti
al limit for largely negative h�i. Inset: thefra
tion of idle, unsaturated and saturated links as a fun
tion of h�i for W = 1; theverti
al height of ea
h region for a given h�i 
orresponds to the respe
tive fra
tion.Symbol: Theoreti
al limit of 1 minus the fra
tion of saturated links for largely negativeh�i (�). (b) hEi=N as a fun
tion of W for h�i = 0. Symbols: message-passing (4), pri
eiteration (
), W ! 0 theoreti
al limit (�). Line: exponential �t for small values of W .Inset: the fra
tion of idle, unsaturated and saturated links as a fun
tion of W for h�i.Symbol: W ! 0 theoreti
al limit of the fra
tion of idle links (�).this model, showing that the resour
e distribution on the nodes depends prin
i-pally on the networkwide availability of resour
es, and depends only weakly onthe 
onne
tivity. Links share the task of resour
e provision, leading to 
urrentdistributions that are almost universally dependent on the resour
e availabilityafter res
aling.While the analysis fo
used on �xed 
onne
tivity and zero temperature foroptimization, it 
an a

ommodate any 
onne
tivity pro�le and temperature pa-rameter and may be used for analyzing a range of inferen
e problems besides op-timization. Consider, for instan
e, an energy fun
tion (
ost) E=P(ij)Aij�(yij)+Pi  (�i; fyij jAij = 1g), where �i is a quen
hed variable de�ned on node i. Inthe 
ontext of probabilisti
 inferen
e, yij may represent the 
oupling betweenobservables in nodes j and i, �(yij) may 
orrespond to the logarithm of theprior distribution of yij , and  (�i; fyij jAij=1g) the logarithm of the likelihoodof the observables �i. Both analysis and algorithm extend the use of 
urrentmessage-passing te
hniques to inferen
e in problems with 
ontinuous variables.These advan
es open up a ri
h area for further investigations with many poten-tial appli
ations in optimization and inferen
e.A
knowledgments This work is partially supported by resear
h grants HKUST6062/02P, DAG04/05.SC25 and DAG05/06.SC36 of the Resear
h Grant Coun-



12
il of Hong Kong and by EVERGROW, IP No. 1935 in the FET, EU FP6 andSTIPCO EU FP5 
ontra
t HPRN-CT-2002-00319.Referen
es1. Peterson L. and Davie B.S., Computer Networks: A Systems Approa
h, A
ademi
Press, San Diego, CA (2000).2. Ho Y.C., Servi L. and Suri R., Large S
ale Systems 1 (1980) 51.3. Shenker S., Clark D., Estrin D. and Herzog S., ACM Computer Comm. Review 26(1996) 19.4. Rardin R. L., Optimization in Operations Resear
h, Prenti
e Hall, Upper SaddleRiver, NJ (1998).5. Bertsekas D., Linear Network Optimzation, MIT Press, Cambridge, MA (1991).6. Opper M. and Saad D., Advan
ed Mean Field Methods, MIT press (2001).7. Ma
Kay D.J.C., Information Theory, Inferen
e and Learning Algorithms, CUP UK(2003).8. Nishimori H., Statisti
al Physi
s of Spin Glasses and Information Pro
essing, OUPUK (2001).9. Wong K.Y.M. and Saad D., arXiv:
ond-mat/0509794 (2005).10. M�ezard M., Parisi P. and Virasoro M., Spin Glass Theory and Beyond, WorldS
ienti�
, Singapore (1987).11. Wong K.Y.M. and Sherrington D., J. Phys. A 20 (1987) L793.12. Kelly F.P., Euro. Trans. on Tele
ommuni
ations & Related Te
hnologies 8 (1997)33.


