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Abstract

The problem of resource allocation in sparse graphs vedhvariables
is studied using methods of statistical physics. An efficdistributed
algorithm is devised on the basis of insight gained from tiedyesis and
is examined using numerical simulations, showing exceflerformance
and full agreement with the theoretical results.

1 Introduction

Optimal resource allocation is a well known problem in theaaof distributed comput-
ing [1, 2] to which significant effort has been dedicated witthe computer science com-
munity. The problem itself is quite general and is applieablother areas as well where a
large number of nodes are required to balance loads/res®and redistribute tasks, such
as reducing internet traffic congestion [3]. The problemrhany flavors and usually refers,
in the computer science literature, to finding practicalristic solutions to the distribution
of computational load between computers connected in sepeadined manner.

The problem we are addressing here is more generic and sseed by nodes of some
computational power that should carry out tasks. Both cdatfmnal powers and tasks will
be chosen at random from some arbitrary distribution. Ttieea@re located on a randomly
chosen sparse graph of some given connectivity. The goalrgdrate tasks on the graph
such that demands will be satisfied while minimizing the miigm of (sub-)tasks. An
important aspect of the desired algorithmic solution ig thecisions on messages to be
passed are carried out locally; this enables an efficienkimentation of the algorithm in
large non-centralized distributed networks. We focus berthe satisfiable case where the
total computing power is greater than the demand, and wheneumber of nodes involved
is very large. The unsatisfiable case can be addressed ursittey $echniques.

We analyze the problem using the Bethe approximation oistital mechanics in Sec-
tion 2, and alternatively a new variant of the replica metphdb] in Section 3. We then
present numerical results in Section 4, and derive a newagegsassing distributed algo-
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rithm on the basis of the analysis (in Section 5). We concthdepaper with a summary
and a brief discussion on future work.

2 Thestatistical physicsframework: Bethe approximation

We consider a typical resource allocation task on a spafsghgof N nodes, labelled
i = 1,.., N. Each node is randomly connected toother node and has a capacity;
randomly drawn from a distributiop(A;). The objective is to migrate tasks between nodes

such that each node will be capable of carrying out its taBkecurrent y;; = —y;; drawn
from nodej to i is aimed at satisfying the constraint
> Ay + A >0, (1)
J
representing the ’revised’ assignment for node where 4;,; = 1/0 for con-

nected/unconnected node pai@ndj, respectively. To illustrate the statistical mechanics
approach to resource allocation, we consider the load bialgtask of minimizing the en-
ergy function (costly = Z(ij) Ai;d(yi;), where the summatiofij) runs over all pairs
of nodes, subject to the constraints (¢)y) is a general function of the currept For
load balancing tasksj(y) is typically a convex function, which will be assumed in our
study. The analysis of the graph is done by introducing tee &nergy’ = —7'In 2, for
atemperaturd’ = 3!, whereZ, is the partition function

2y = H/dyinG) ZAijyij +A; | exp *52Aij¢(yij) . @)
( J

(i5) (i5)
The® function returns 1 for a non-negative argument and O othserwi

When the connectivity: is low, the probability of finding a loop of finite length on the
graph is low, and the Bethe approximation well describedaba environment of a node.
In the approximation, a node is connected toranches in a tree structure, and the corre-
lations among the branches of the tree are neglected. Inlwaakh, nodes are arranged
in generations. A node is connected to an ancestor node qfréwious generation, and
anotherc — 1 descendent nodes of the next generation.

Consider a verte¥' (T) of capacityAy (T, and a curreny is drawn from the vertex.
One can write an expression for the free enefgy|T) as a function of the free energies
F(yx|T}) of its descendants, that branch out from this vertex

F(y|T) = Tln{c]:[l </dyk) @<Cz_lyky+/\v>

k=1
}, ®3)

where T, represents the tree terminated at #i& descendent of the vertex. The free
energy can be considered as the sum of two p&Xtg|T) = Nt Fov+Fv (y| T), whereN

is the number of nodes in the tré® F,,, is the average free energy per node, ahdy|T)

is referred to as theertex free energy?. Note that when a vertex is added to a tree, there is a

c—1

X exp [—ﬁz (F(yx|Tr) + o(yx))
k

=1

Although we focus here on graphs of fixed connectivity, onme easily accommodate any con-
nectivity profile within the same framework; the algorithpresented later are completely general.

2This term is marginalized over all inputs to the currenterrteaving the difference in chemical
potentialy as its sole argument, hence the terminology used.



change in the free energy due to the added vertex. Since thbamof nodes increases by
1, the vertex free energy is obtained by subtracting thedreszgy change by the average
free energy. This allows us to obtain the recursion relation

bt ol T ()0 (S v hvn

k=1
} - Fava (4)
and the average free energy per node is given by

Foy = —T<1n{£[1 (/ dyk) ! <I; n +Av>
). .

whereAy is the capacity of the verteX fed byc treesTy, ..., T., and(... ) represents
the average over the distributi@A). In the zero temperature limit, Eq. (4) reduces to

c—1

X exp [—ﬁz (Fv (yx|Tk) + o(yx))

k=1

X exp [BZ (Fv (yx| Tx) + o(yr))

k=1

c—1
Fy (y|T) = _, min D (Fv(ur|Th) + $(wr)) | — Fav-  (6)
{yrl Xoh=1 ¥k —y+Av (1) >0} h—1

The current distribution and the average free energy pkicim be derived by integrating
the curreny/’ in a link from one vertex to another, fed by the tr@sandT, respectively;
the obtained expressions @P¢y) = (5(y — y'))« and(E) = (¢(y’))~ where

(o), = <fdy' exp [—6 (Fy (¥/|T1) + Fv (/| T2) + ¢(y))] (°)>
* [y’ exp =B (Fv(y'|T1) + Fv(=y'|T2) + o(y')] /[,

()

3 Thegtatistical physicsframework: replica method

In this section, we sketch the analysis of the problem udiegéplica method, as an alter-
native to the Bethe approximation. The derivation is rativelved, details will be provided
elsewhere. To facilitate derivations, we focus on the gaticicost functions(y) = y2/2.
The results confirm the validity of the Bethe approximatiorsparse graphs.

An alternative formulation of the original optimization gilem is to consider its
dual. Introducing Lagrange multipliers, the function to mmnimized becomed, =
Z(”) Aijyii /2 + 32 (35 Aijyij + Ai). Optimizing L with respect toy;;, one ob-
tainsy;; = p; — i, whereul is referred to as thehemical potential of nodei, and the
current is driven by the potential difference.

Although the analysis has also been carried out in the spaagri@nts, we focus here on
the optimization problem in the space of the chemical pa&ntSince the energy function
is invariant under the addition of an arbitrary global canstto the chemical potentials of
all nodes, we introduce an extra regularization terfi, /2 to break the translational
symmetry, where — 0. To study the characteristics of the problem one calculdtes
averaged free energy per nallg = —7'(In Z,,) 4,2 /N, whereZ,, is the partition function

H{/dm (ZAW m+A)]exp[§ (ZAM%WH;M%)].

[ (i5)



The calculation follows the main steps of a replica basecltation in diluted systems [6],
using the identityin Z = lim,,_,o[Z™ — 1]/n. The replicated partition function [5] is av-
eraged over all network configurations with connectivitgd @apacity distributiong(A;).
We consider the case of intensive connectivityO(1) < N. Extending the analysis of [6]
and averaging over all connectivity matrices, one finds

(Zm = expN{g —cy Qr,sQr,s-l—ln/dAp(A)H (/dua /AOO dAa/%)
X exp [Z <z’5\a()\a + cpa) — g(c + e)ui)] XC}7 (8)

[e3

whereX = 3, Qrs [T (—ida) e + 3, 4 m“?i IL, 1 (Bpia — ida)®. The
order parameter§), s and Qr,51 are labelled by the somewhat unusual indicesnds,
representing the-component integer vecto(s, , .., ,) and(su, .., s, ) respectively. This

is a result of the specific interaction considered whichmgies nodes of different indices.
The order paramete3; s andes are given by the extremum condition of Eq. (8), i.e., via
a set of saddle point equations w.r.t the order parametessurAing replica symmetry, the
saddle point equations yield a recursion relation for a t@oyponent functior, which is
related to the order parameters via the generating function

P(z) = > Qes ][] @ = <H ( / dp R(za,u|T>e-B“2/2uSa)> . O

r [e3 (0%

In Eq. (9), T represents the tree terminated at the vertex node with da¢mpotential
u, providing input to the ancestor node with chemical poténtj and(...), represents
the average over the distributigriA). The resultant recursion relation fé(z, u|T) is
independent of the replica indices, and is given by

c—1 c—1
1
R(z,p|T) = D 11 (/ dﬂkR(N7Mk|Tk)) 9(2 Mk—CM+Z+AV(T)>
e}

k=1
c—1
X exp lg <Z(u — k)’ + 6u2> , (10)
k=1

where the vertex node has a capadity(r; D is a constant.R(z, u|T) is expressed in
terms ofc—1 functionsR(u, ux|Tx) (k=1,..,c—1), integrated ovep,. This algebraic
structure is typical of the Bethe lattice tree-like repreaaion of networks of connectivity

¢, where a node obtains input from its- 1 descendent nodes of the next generation, and
T, represents the tree terminated atAffe descendent.

Except for the regularization factarxp(—pBeu?/2), R turns out to be a function of
y = p — z, which is interpreted as the current drawn from a node withnacal po-
tential 1 by its ancestor with chemical potential One can then express the functifin
as the product of aertex partition function Zy and a normalization factoi/, that is,
R(z,u|T) = W(u)Zy (y|T). Inthe limitn — 0, the dependence gnandy are separa-
ble, providing a recursion relation fdfy (y|T). This gives rise to theertex free energy
Fy (y|T) = —T'In Zy (y|T) when a curreny is drawn from the vertex of a tréE. The re-
cursive equation and the average free energy expressieasagith the results in the Bethe
approximation. These iterative equations can be direirtkel to those obtained from a
principled Bayesian approximation, where the logarithithe messages passed between
nodes are proportional to the vertex free energies.



4 Numerical solution

The solution of Eq. (6) is obtained numerically. Since theasefree energy of a node de-
pends on its own capacity and the disordered configuratiite descendants, we generate
1000 nodes at each iteration of Eq. (6), with capacities@arig drawn from the distribu-
tion p(A), each being fed by—1 nodes randomly drawn from the previous iteration.

We have discretized the vertex free energiggy|T) function into a vector, whosg"
component is the value of the function corresponding to tireenty;. To speed up the
optimization search at each node, we first find vlaeex saturation current drawn from

a node such that: (a) the capacity of the node is just usedb)phé current drawn by
each of its descendant nodes is just enough to saturaterits@pacity constraint. When
these conditions are satisfied, we can separately optitheeurrent drawn by each de-
scendant node, and the vertex saturation current is eqtte toode capacity subtracted by
the current drawn by its descendants. The optimal solutionbe found using an exhaus-
tive search, by varying the component currents in smallrdiscsteps. This approach is
particularly convenient for = 3, where the search is confined to a single parameter.

To compute the average energy, we randomly draw 2 nodes,tertige optimal current
flowing between them, and repeat the sampling to obtain theage. Figure 1(a) shows
the results as a function of iteration stedor a Gaussian capacity distributi@A) with
variance 1 and averagd). Each iteration corresponds to adding one extra generation
the tree structure, such that the iterative process carnelsto approximating the network
by an increasingly extensive tree. We observe that afteniéialirise with iteration steps,
the average energies converges to steady-state valuesata&t which increases with the
average capacity.

To study the convergence rate of the iterations, we fit thea@eeenergy at iteration step
t using (E(t) — E(c0)) ~ exp(—~t) in the asymptotic regime. As shown in the inset of
Fig. 1(a), the relaxation rateincreases with the average capacity. It is interesting te no
that a cusp exists at the average capacity of about 0.45.wBblat value, convergence
of the iteration is slow, since the average energy curvasstardevelop a plateau before
the final convergence. On the other hand, the plateau disspped the convergence is
fast above the cusp. The slowdown of convergence below the isyprobably due to the
appearance of increasingly large clusters of nonzero ot&'i@n the network, since clus-
ters of nodes with negative capacities become increasiextgnsive, and need to draw
currents from increasingly extensive regions of nodes extess capacities to satisfy the
demand. Figure 1(b) illustrates the current distributionvarious average capacities. The
distribution P(y) consists of a delta function componentat 0 and a continuous com-
ponent whose breadth decreases with average capacity. rdd¢tof of links with zero
currents increases with the average capacity. Hence at average capacity, links with
nonzero currents form a percolating cluster, whereas agladierage capacity, it breaks
into isolated clusters.

5 Distributed algorithms

The local nature of the recursion relation Eq. (6) pointdh possibility that the network
optimization can be solved by message passing approachées) have been successful
in problems such as error-correcting codes [8] and protistibiinference [9]. The major
advantage of message passing is its potential to solve algbptimization problem via
local updates, thereby reducing the computational conitglekor example, the compu-
tational complexity of quadratic programming for the loadamcing task typically scales
as N3, whereas capitalizing on the network topology underlyimg tonnectivity of the
variables, message passing scalesvasAn even more important advantage, relevant to
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Figure 1: Results for system si2é= 1000 and¢(y) = y2/2. (a) (E) obtained by iterating
Eqg. (6) as a function of for (A)=0.1, 0.2, 0.4, 0.6, 0.8 (top to bottom) ang 3. Dashed
line: The asymptotigE) for (A) =0.1. Inset:~ as a function of A). (b) The distribution
P(y) obtained by iterating Eq. (6) to steady states for the samanpeters and average
capacities as in (a), from right to left. Insé®(y=0) as a function of A). Symbols:c=3
(O)and @), c=4 () and ), c=5 (<) and (V); each pair obtained from Egs. (11) and
(14) respectively. Lineerf((A)/+/2). (c) (E) as a function of A) for c=3, 4, 5. Symbols:
results of Eq. (6) ), Eq.(11) (0), and Eq. (14) ¢). Inset: (E) multiplied by (c—2) as

a function of(A) for the same conditions. (d) The distributiét{..) obtained by iterating
Eq. (14) to steady states for the same parameters and avejaagéties as in (b), from left
to right. Inset:P(1=0) as a function of A). Symbols: same as (b).

practical implementation, is its distributive nature; @es$ not require a global optimizer,
and is particularly suitable for distributive control inaving networks.

However, in contrast to other message passing algorithnidwplass conditional probabil-

ity estimates ofliscrete variablesto neighboring nodes, the messages in the present context
are more complex, since they dumctions Fy/ (y|T) of the curreny. We simplify the mes-
sage to 2 parameters, namely, the first and second derwatithe vertex free energies.
For the quadratic load balancing task, it can be shown thalfasnsistent solution of the
recursion relation, Eq. (6), consists of vertex free ereergihich are piecewise quadratic
with continuous slopes. This makes the 2-parameter messagg precise approximation.

Let (Aij, Bij) = (OFv (yi;T;)/dyij, 0° Fv (yi;1T;) /dy;;) be the message passed from



nodej to i; using Eq.(6), the recursion relation of the messages becom
—1
Ay = =g, By —O(—pig) | D Aum(dfy +Bjx)™'| , where  (11)
ki
Dok Aielyie — (O + Aji) (D + Bir) T+ Ay — i
Zky&i Ajk(d);‘/k + Bjr)
with qb;.k and ;’k representing the first and second derivatives(@f) aty = y;i respec-
tively. The forward passing of the message from ngtte; is then followed by a backward
message from nodgto k for updating the currentsg;;, according to
Pl + Aj + i
"k T Bik .

Y 0 Y (12)

Mij = min

Yjk < Yjk — (13)
We simulate networks with = 3, ¢(y) = y?/2 and compute their average energies. The
network configurations are generated randomly, with lodder@ths 3 or less excluded.
Updates are performed with random sequential choices eofdtes. As shown in Fig. 1(c),
the simulation results of the message passing algorithra Aawexcellent agreement with
those obtained by the recursion relation Eq.(6).

For the quadratic load balancing task considered here,depandent exact optimization
is available for comparison. The Kithn-Tucker conditiomisthe optimal solution yields

1
j; = min | — ZAijujJrAi ,01 . (14)
J

c

It also provides a local iterative method for the optimiaatiproblem. As shown in
Fig. 1(c), both the recursion relation Eq.(6) and the mesgsspsing algorithm Eq.(11)
yield excellent agreement with the iteration of chemicakpdals Eq.(14).

Both Egs. (11) and (14) allow us to study the distributi®f).) of the chemical potentials

u. As shown in Fig. 1(d)P(u) consists of a delta function and a continuous component.
Nodes with zero chemical potentials correspond to thosk wilsaturated capacity con-
straints. The fraction of unsaturated nodes increasesthdthverage capacity, as shown in
the inset of Fig. 1(d). Hence at a low average capacity, as@dmodes form a percolating
cluster, whereas at a high average capacity, it breakssntated clusters. It is interesting
to note that at the average capacity of 0.45, below which alastarts to develop in the
relaxation rate of the recursion relation Eq. (6), the facbf unsaturated nodes is about
0.53, close to the percolation threshold of 0.5de¢ 3.

Besides the case of= 3, Fig. 1(c) also shows the simulation results of the averagegy
for ¢ = 4,5, using both Egs. (11) and (14). We see that the average edegases
when the connectivity increases. This is because the igerialinks connecting a node
provides more freedom to allocate resources. When the gee@pacity is 0.2 or above,
an exponential fitE) ~ exp(—k(A)) is applicable, wheré lies in the range 2.5 to 2.7.
Remarkably, multiplying by a factor ¢t — 2), we find that the 3 curves collapse in this
regime of average capacity, showing that the average erseajgs agc — 2)~! in this
regime, as shown in the inset of Fig. 1(c).

Further properties of the optimized networks have beenieduioly simulations, and will
be presented elsewhere. Here we merely summarize the nzailtste(a) When the av-
erage capacity drops below 0.1, the energy rises above fhenertial fit applicable to
the average capacity above 0.2. (b) The fraction of link& w@ro currents increases with
the average capacity, and is rather insensitive to the atinitg. Remarkably, except for



very small average capacities, the functiof((A)/1/2) has a very good fit with the data.
Indeed, in the limit of larg€A), this function approaches the fraction of links with both
vertices unsaturated, that g, dAp(A)]%. (c) The fraction of unsaturated nodes increases
with the average capacity, and is rather insensitive to tmmectivity. In the limit of large
average capacities, it approaches the upper bourjd'afAp(A), which is the probability
that the capacity of a node is non-negative. (d) The convegéime of Eq. (11) can be
measured by the time for the r.m.s. of the changes in the da¢pdtentials to fall below
a threshold. Similarly, the convergence time of Eqg. (14) lsarmeasured by the time for
the r.m.s. of the sums of the currents in both message directf a link to fall below a
threshold. When the average capacity is 0.2 or above, welimgawer-law dependence
on the average capacity, the exponent ranging frehfor ¢ = 3 to —0.8 for ¢ = 5 for
Eqg. (14), and being about -0.5 for= 3,4,5 for Eq. (11). When the average capacity
decreases further, the convergence time deviates abopewer laws.

6 Summary

We have studied a prototype problem of resource allocatisparsely connected networks
using the replica method, resulting in recursion relatiomesrpretable using the Bethe ap-
proximation. The resultant recursion relation leads to @&sage passing algorithm for
optimizing the average energy, which significantly redubescomputational complexity

of the global optimization task and is suitable for onlingtdbutive control. The suggested
2-parameter approximation produces results with excedigreement with the original re-

cursion relation. For the simple but illustrative exampighis letter, we have considered a
guadratic cost function, resulting in an exact algorithredzhon local iterations of chem-

ical potentials, and the message passing algorithm shawarkable agreement with the
exact result. The suggested simple message passing hlgadn be generalized to more
realistic cases of nonlinear cost functions and additiaoalstraints on the capacities of
nodes and links. This constitutes a rich area for furthegstigations with many potential

applications.
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