438 research outputs found
Thermal ageing phenomena and strategies towards reactivation of NO x - storage catalysts
The thermal ageing and reactivation of Ba/CeO2 and Ba/Al2O3 based NO x -storage/ reduction (NSR) catalysts was studied on model catalysts and catalyst systems at the engine. The mixed oxides BaAl2O4 and BaCeO3, which lower the storage activity, are formed during ageing above 850°C and 900°C, respectively. Interestingly, the decomposition of BaCeO3 in an atmosphere containing H2O/NO2 leads again to NO x -storage active species, as evidenced by comparison of fresh, aged and reactivated Pt-Ba/CeO2 based model catalysts. This can be technically exploited, particularly for the Ba/CeO2 catalysts, as reactivation studies on thermally aged Ba/CeO2 and Ba/Al2O3 based NSR catalysts on an engine bench showed. An on-board reactivation procedure is presented, that improved the performance of a thermally aged catalyst significantl
Webteaching: sequencing of subject matter in relation to prior knowledge of pupils
Two experiments are discussed in which the sequencing procedure of webteaching is compared with a linear sequence for the presentation of text material.\ud
\ud
In the first experiment variations in the level of prior knowledge of pupils were studied for their influence on the sequencing mode of text presentation. Prior knowledge greatly reduced the effect of the size of sequencing procedures.\ud
\ud
In the second experiment pupils with a low level of prior knowledge studied a text, following either a websequence or a linear sequence. Webteaching was superior to linear teaching on a number of dependent variables. It is concluded that webteaching is an effective sequencing procedure in those cases where substantial new learning is required
Sociology and postcolonialism: another 'missing' revolution?
Sociology is usually represented as having emerged alongside European modernity. The latter is frequently understood as sociology's special object with sociology itself a distinctively modern form of explanation. The period of sociology's disciplinary formation was also the heyday of European colonialism, yet the colonial relationship did not figure in the development of sociological understandings. While the recent emergence of postcolonialism appears to have initiated a reconsideration of understandings of modernity, with the development of theories of multiple modernities, I suggest that this engagement is more an attempt at recuperating the transformative aspect of postcolonialism than engaging with its critiques. In setting out the challenge of postcolonialism to dominant sociological accounts, I also address `missing feminist/queer revolutions', suggesting that by engaging with postcolonialism there is the potential to transform sociological understandings by opening up a dialogue beyond the simple pluralism of identity claims
The prevalence of triggers in paediatric migraine: a questionnaire study in 102 children and adolescents
The prevalence and characterization of migraine triggers have not been rigorously studied in children and adolescents. Using a questionnaire, we retrospectively studied the prevalence of 15 predefined trigger factors in a clinic-based population. In 102 children and adolescents fulfilling the Second Edition of The International Headache Classification criteria for paediatric migraine, at least one migraine trigger was reported by the patient and/or was the parents’ interpretation in 100% of patients. The mean number of migraine triggers reported per subject was 7. Mean time elapsed between exposure to a trigger factor and attack onset was comprised between 0 and 3 h in 88 patients (86%). The most common individual trigger was stress (75.5% of patients), followed by lack of sleep (69.6%), warm climate (68.6%) and video games (64.7%). Stress was also the most frequently reported migraine trigger always associated with attacks (24.5%). In conclusion, trigger factors were frequently reported by children and adolescents with migraine and stress was the most frequent
The Cabauw Intercomparison Campaign for Nitrogen Dioxide Measuring Instruments (CINDI): Design, Execution, and Early Results
From June to July 2009 more than thirty different in-situ and remote sensing instruments from all over the world participated in the Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). The campaign took place at KNMI's Cabauw Experimental Site for Atmospheric Research (CESAR) in the Netherlands. Its main objectives were to determine the accuracy of state-ofthe- art ground-based measurement techniques for the detection of atmospheric nitrogen dioxide (both in-situ and remote sensing), and to investigate their usability in satellite data validation. The expected outcomes are recommendations regarding the operation and calibration of such instruments, retrieval settings, and observation strategies for the use in ground-based networks for air quality monitoring and satellite data validation. Twenty-four optical spectrometers participated in the campaign, of which twenty-one had the capability to scan different elevation angles consecutively, the so-called Multi-axis DOAS systems, thereby collecting vertical profile information, in particular for nitrogen dioxide and aerosol. Various in-situ samplers and lidar instruments simultaneously characterized the variability of atmospheric trace gases and the physical properties of aerosol particles. A large data set of continuous measurements of these atmospheric constituents has been collected under various meteorological conditions and air pollution levels. Together with the permanent measurement capability at the CESAR site characterizing the meteorological state of the atmosphere, the CINDI campaign provided a comprehensive observational data set of atmospheric constituents in a highly polluted region of the world during summertime. First detailed comparisons performed with the CINDI data show that slant column measurements of NO2, O4 and HCHO with MAX-DOAS agree within 5 to 15%, vertical profiles of NO2 derived from several independent instruments agree within 25% of one another, and MAX-DOAS aerosol optical thickness agrees within 20-30% with AERONET data. For the in-situ NO2 instrument using a molybdenum converter, a bias was found as large as 5 ppbv during day time, when compared to the other in-situ instruments using photolytic converters
Revisiting the warm sub-Saturn TOI-1710b
The Transiting Exoplanet Survey Satellite (TESS) provides a continuous suite
of new planet candidates that need confirmation and precise mass determination
from ground-based observatories. This is the case for the G-type star TOI-1710,
which is known to host a transiting sub-Saturn planet
(28.34.7) in a long-period orbit
(P=24.28\,d). Here we combine archival SOPHIE and new and archival HARPS-N
radial velocity data with newly available TESS data to refine the planetary
parameters of the system and derive a new mass measurement for the transiting
planet, taking into account the impact of the stellar activity on the mass
measurement. We report for TOI-1710b a radius of
5.150.12, a mass of
18.44.5, and a mean bulk density of
0.730.18, which are consistent at
1.2, 1.5, and 0.7, respectively, with previous
measurements. Although there is not a significant difference in the final mass
measurement, we needed to add a Gaussian process component to successfully fit
the radial velocity dataset. This work illustrates that adding more
measurements does not necessarily imply a better mass determination in terms of
precision, even though they contribute to increasing our full understanding of
the system. Furthermore, TOI-1710b joins an intriguing class of planets with
radii in the range 4-8 that have no counterparts in the
Solar System. A large gaseous envelope and a bright host star make TOI-1710b a
very suitable candidate for follow-up atmospheric characterization.Comment: Accepted for publication in A&A. 21 pages, 14 figure
Validating AU Microscopii d with Transit Timing Variations
AU Mic is a young (22 Myr), nearby exoplanetary system that exhibits excess transit timing variations (TTVs) that cannot be accounted for by the two known transiting planets nor stellar activity. We present the statistical “validation” of the tentative planet AU Mic d (even though there are examples of “confirmed” planets with ambiguous orbital periods). We add 18 new transits and nine midpoint times in an updated TTV analysis to prior work. We perform the joint modeling of transit light curves using EXOFASTv2 and extract the transit midpoint times. Next, we construct an O − C diagram and use Exo-Striker to model the TTVs. We generate TTV log-likelihood periodograms to explore possible solutions for d’s period, then follow those up with detailed TTV and radial velocity Markov Chain Monte Carlo modeling and stability tests. We find several candidate periods for AU Mic d, all of which are near resonances with AU Mic b and c of varying order. Based on our model comparisons, the most-favored orbital period of AU Mic d is 12.73596 ± 0.00793 days ( T _C _,d = 2458340.55781 ± 0.11641 BJD), which puts the three planets near 4:6:9 mean-motion resonance. The mass for d is 1.053 ± 0.511 M _⊕ , making this planet Earth-like in mass. If confirmed, AU Mic d would be the first known Earth-mass planet orbiting a young star and would provide a valuable opportunity in probing a young terrestrial planet’s atmosphere. Additional TTV observations of the AU Mic system are needed to further constrain the planetary masses, search for possible transits of AU Mic d, and detect possible additional planets beyond AU Mic c
TESS Delivers Five New Hot Giant Planets Orbiting Bright Stars From The Full-Frame Images
We present the discovery and characterization of five hot and warm Jupiters—TOI-628 b (TIC 281408474; HD 288842), TOI-640 b (TIC 147977348), TOI-1333 b (TIC 395171208, BD+47 3521A), TOI-1478 b (TIC 409794137), and TOI-1601 b (TIC 139375960)—based on data from NASA\u27s Transiting Exoplanet Survey Satellite (TESS). The five planets were identified from the full-frame images and were confirmed through a series of photometric and spectroscopic follow-up observations by the TESS Follow-up Observing Program Working Group. The planets are all Jovian size (RP = 1.01–1.77 RJ) and have masses that range from 0.85 to 6.33 MJ. The host stars of these systems have F and G spectral types (5595 ≤ Teff ≤ 6460 K) and are all relatively bright (9.5 \u3c V \u3c 10.8, 8.2 \u3c K \u3c 9.3), making them well suited for future detailed characterization efforts. Three of the systems in our sample (TOI-640 b, TOI-1333 b, and TOI-1601 b) orbit subgiant host stars ( g \u3c 4.1). TOI-640 b is one of only three known hot Jupiters to have a highly inflated radius (RP \u3e 1.7 RJ, possibly a result of its host star\u27s evolution) and resides on an orbit with a period longer than 5 days. TOI-628 b is the most massive, hot Jupiter discovered to date by TESS with a measured mass of MJ and a statistically significant, nonzero orbital eccentricity of e = . This planet would not have had enough time to circularize through tidal forces from our analysis, suggesting that it might be remnant eccentricity from its migration. The longest-period planet in this sample, TOI-1478 b (P = 10.18 days), is a warm Jupiter in a circular orbit around a near-solar analog. NASA\u27s TESS mission is continuing to increase the sample of well-characterized hot and warm Jupiters, complementing its primary mission goals
Validating AU Microscopii d with Transit Timing Variations
AU Mic is a young (22 Myr) nearby exoplanetary system that exhibits excess
TTVs that cannot be accounted for by the two known transiting planets nor
stellar activity. We present the statistical "validation" of the tentative
planet AU Mic d (even though there are examples of "confirmed" planets with
ambiguous orbital periods). We add 18 new transits and nine midpoint times in
an updated TTV analysis to prior work. We perform the joint modeling of transit
light curves using EXOFASTv2 and extract the transit midpoint times. Next, we
construct an O-C diagram and use Exo-Striker to model the TTVs. We generate TTV
log-likelihood periodograms to explore possible solutions for the period of
planet d and then follow those up with detailed TTV and RV MCMC modeling and
stability tests. We find several candidate periods for AU Mic d, all of which
are near resonances with AU Mic b and c of varying order. Based on our model
comparisons, the most-favored orbital period of AU Mic d is 12.73596+/-0.00793
days (T_{C,d}=2458340.55781+/-0.11641 BJD), which puts the three planets near a
4:6:9 mean-motion orbital resonance. The mass for d is 1.053+/-0.511 M_E,
making this planet Earth-like in mass. If confirmed, AU Mic d would be the
first known Earth-mass planet orbiting a young star and would provide a
valuable opportunity in probing a young terrestrial planet's atmosphere.
Additional TTV observation of the AU Mic system are needed to further constrain
the planetary masses, search for possible transits of AU Mic d, and detect
possible additional planets beyond AU Mic c.Comment: 89 pages, 35 figures, 34 tables. Redid EXOFASTv2 transit modeling to
recover more reasonable stellar posteriors, so redid Exo-Striker TTV modeling
for consistency. Despite these changes, the overall results remain unchanged:
the 12-7-day case is still the most favored. Submitted to AAS Journals on
2023 Feb 9t
The Magellan-TESS Survey I: Survey Description and Mid-Survey Results
One of the most significant revelations from Kepler is that roughly one-third
of Sun-like stars host planets which orbit their stars within 100 days and are
between the size of Earth and Neptune. How do these super-Earth and sub-Neptune
planets form, what are they made of, and do they represent a continuous
population or naturally divide into separate groups? Measuring their masses and
thus bulk densities can help address these questions of their origin and
composition. To that end, we began the Magellan-TESS Survey (MTS), which uses
Magellan II/PFS to obtain radial velocity (RV) masses of 30 transiting
exoplanets discovered by TESS and develops an analysis framework that connects
observed planet distributions to underlying populations. In the past, RV
measurements of small planets have been challenging to obtain due to the
faintness and low RV semi-amplitudes of most Kepler systems, and challenging to
interpret due to the potential biases in the existing ensemble of small planet
masses from non-algorithmic decisions for target selection and observation
plans. The MTS attempts to minimize these biases by focusing on bright TESS
targets and employing a quantitative selection function and multi-year
observing strategy. In this paper, we (1) describe the motivation and survey
strategy behind the MTS, (2) present our first catalog of planet mass and
density constraints for 25 TESS Objects of Interest (TOIs; 20 in our population
analysis sample, five that are members of the same systems), and (3) employ a
hierarchical Bayesian model to produce preliminary constraints on the
mass-radius (M-R) relation. We find qualitative agreement with prior
mass-radius relations but some quantitative differences (abridged). The the
results of this work can inform more detailed studies of individual systems and
offer a framework that can be applied to future RV surveys with the goal of
population inferences.Comment: 101 pages (39 of main text and references, the rest an appendix of
figures and tables). Submitted to AAS Journal
- …