78 research outputs found

    3D shape optimisation of a low-pressure turbine stage

    Full text link
    The possibility of reducing the flow losses in low-pressure turbine stage has been investigated in an iterative process using a novel hybrid optimisation algorithm. Values of the maximised objective function that is isentropic efficiency are found from 3D RANS computation of the flowpath geometry, which was being changed during the optimisation process. To secure the global flow conditions, the constraints have been imposed on the mass flow rate and reaction. Among the optimised parameters are stator and rotor twist angles, stator sweep and lean, both straight and compound. Blade profiles remained unchanged during the optimisation. A new hybrid stochastic-deterministic algorithm was used for the optimisation of the flowpath. In the proposed algorithm, the bat algorithm was combined with the direct search method of Nelder-Mead in order to refine the best obtained solution from the standard bat algorithm. The method was tested on a wide variety of well-known test functions. Also, the results of the optimisation of the other stochastic and deterministic methods were compared and discussed. The optimisation gives new 3D-stage designs with increased efficiency comparing to the original design.This work was supported by The National Science Centre, Grant No. 2015/17/N/ST8/01782

    ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ проСктирования Ρ‚ΡƒΡ€Π±ΠΈΠ½ осСвого Ρ‚ΠΈΠΏΠ° для ΠΊΠΎΠ³Π΅Π½Π΅Ρ€Π΅Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ установки ORC, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‰Π°Ρ Π² качСствС Ρ€Π°Π±ΠΎΡ‡Π΅Π³ΠΎ Ρ‚Π΅Π»Π° силикатноС масло (MDM)

    No full text
    The paper describes two methods for the design of blading systems of axial turbines for an Organic Rankine Cycle (ORC) cogeneration unit working with silica oil MDM. The algorithms are based on mathematical models of various levels of complexity – from 1D to 3D. Geometry of flow parts is described with the help of analytical methods of profiling using a limited number of parameters. The 3D turbulent flow model is realised in the software complex IPMFlow, which is developed based on the earlier codes FlowER and FlowERU, or in software complex ANSYS. Examples of developed turbines for a 500 kW machine are presented.ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ проСктирования ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½Ρ‹Ρ… частСй Ρ‚ΡƒΡ€Π±ΠΈΠ½ осСвого Ρ‚ΠΈΠΏΠ°. Алгоритм основан Π½Π° использовании матСматичСских ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ слоТности – ΠΎΡ‚ 1D Π΄ΠΎ 3D. ОписаниС Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½Ρ‹Ρ… частСй выполняСтся с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² аналитичСского профилирования, исходными Π΄Π°Π½Π½Ρ‹ΠΌΠΈ для ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… слуТит ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ΅ число парамСтричСских Π²Π΅Π»ΠΈΡ‡ΠΈΠ½. МодСль 3D Ρ‚ΡƒΡ€Π±ΡƒΠ»Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ тСчСния Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π° Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΌ комплСксС IPMFlow, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ являСтся Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ΠΌ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ FlowER ΠΈ FlowER-U ΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΌ комплСксС ANSYS. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½Ρ‹Ρ… частСй Ρ‚ΡƒΡ€Π±ΠΈΠ½ энСргСтичСских машин ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒΡŽ 500 ΠΊΠ’Ρ‚

    ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈ проСктування Ρ‚ΡƒΡ€Π±Ρ–Π½ осьового Ρ‚ΠΈΠΏΡƒ для ΠΊΠΎΠ³Π΅Π½Π΅Ρ€Π°Ρ†Ρ–ΠΉΠ½ΠΎΡ— установки ORC, яка використовує Π² якості Ρ€ΠΎΠ±ΠΎΡ‡ΠΎΠ³ΠΎ Ρ‚Ρ–Π»Π° силікатнС масло

    No full text
    The paper describes two methods for the design of blading systems of axial turbines for an OrganicRankine Cycle (ORC) cogeneration unit working with silica oil MDM. The algorithms are based onmathematical models of various levels of complexity – from 1D to 3D. Geometry of flow parts is described withthe help of analytical methods of profiling using a limited number of parameters. The 3D turbulent flow model isrealised in the software complex IPMFlow, which is developed based on the earlier codes FlowER and FlowERU,or in software complex ANSYS. Examples of developed turbines for a 500 kW machine are presented.ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ проСктирования ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½Ρ‹Ρ… частСй Ρ‚ΡƒΡ€Π±ΠΈΠ½ осСвого Ρ‚ΠΈΠΏΠ°. Алгоритм основан Π½Π° использовании матСматичСских ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ слоТности – ΠΎΡ‚ 1D Π΄ΠΎ 3D. ОписаниС Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½Ρ‹Ρ… частСй выполняСтся с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² аналитичСского профилирования, исходными Π΄Π°Π½Π½Ρ‹ΠΌΠΈ для ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… слуТит ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ΅ число парамСтричСских Π²Π΅Π»ΠΈΡ‡ΠΈΠ½. МодСль 3D Ρ‚ΡƒΡ€Π±ΡƒΠ»Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ тСчСния Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π° Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΌ комплСксС IPMFlow, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ являСтся Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ΠΌ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ FlowER ΠΈ FlowER-U ΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΌ комплСксС ANSYS. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½Ρ‹Ρ… частСй Ρ‚ΡƒΡ€Π±ΠΈΠ½ энСргСтичСских машин ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒΡŽ 500 ΠΊΠ’Ρ‚.ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΈ проСктування ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΈΡ… частин Ρ‚ΡƒΡ€Π±Ρ–Π½ осьового Ρ‚ΠΈΠΏΡƒ. Алгоритм Π±Π°Π·ΡƒΡ”Ρ‚ΡŒΡΡ Π½Π° використанні ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Ρ€Ρ–Π·Π½ΠΈΡ… Ρ€Ρ–Π²Π½Ρ–Π² складності - Π²Ρ–Π΄ 1D Π΄ΠΎ 3D. Опис Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€Ρ–Ρ— ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΈΡ… частин Π²ΠΈΠΊΠΎΠ½ΡƒΡ”Ρ‚ΡŒΡΡ Π·Π° допомогою ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π² Π°Π½Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΡ„Ρ–Π»ΡŽΠ²Π°Π½Π½Ρ, ΠΏΠΎΡ‡Π°Ρ‚ΠΊΠΎΠ²ΠΈΠΌΠΈ Π΄Π°Π½ΠΈΠΌΠΈ для яких ΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ ΠΎΠ±ΠΌΠ΅ΠΆΠ΅Π½Π΅ число ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½. МодСль 3D Ρ‚ΡƒΡ€Π±ΡƒΠ»Π΅Π½Ρ‚Π½ΠΎΡ— Ρ‚Π΅Ρ‡Ρ–Ρ— Ρ€Π΅Π°Π»Ρ–Π·ΠΎΠ²Π°Π½Π° Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠ½ΠΎΠΌΡƒ комплСксі IPMFlow, який Ρ” Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΠΎΠΌ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌ FlowER Ρ– FlowER-U Ρ‚Π° ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠ½ΠΎΠΌΡƒ комплСксі ANSYS. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ– ΠΏΡ€ΠΈΠΊΠ»Π°Π΄ΠΈ Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΈΡ… ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΈΡ… частин Ρ‚ΡƒΡ€Π±Ρ–Π½ Π΅Π½Π΅Ρ€Π³Π΅Ρ‚ΠΈΡ‡Π½ΠΈΡ… машин ΠΏΠΎΡ‚ΡƒΠΆΠ½Ρ–ΡΡ‚ΡŽ 500 ΠΊΠ’Ρ‚
    • …
    corecore