592 research outputs found

    Common Cerambycid Pheromone components as attractants for Longhorn Beetles (Cerambycidae) breeding in ephemeral oak substrates in Northern Europe

    Get PDF
    Longhorn beetles are ecologically important insects in forest ecosystems as decomposers of woody substrates, microhabitat engineers, and as components of forest food webs. These species can be greatly affected both positively and negatively by modern forestry management practices, and should be monitored accordingly. Through headspace sampling, coupled gas chromatography-electroantennography, gas chromatography-mass spectrometry, and field bioassays, we identified two compounds, 2-methyl-1-butanol and 3-hydroxy-2-hexanone, that constitute aggregation-sex pheromone attractants of three cerambycid species which breed primarily in different types of fresh, recently dead oak wood in Northern Europe: Pyrrhidium sanguineum (L.), Phymatodes alni ssp. alni (L.), and Phymatodes testaceus (L.) (Cerambycinae: Callidiini). Analyses of headspace volatiles collected from live insects indicated that the male-produced aggregation-sex pheromone of P. sanguineum is a 1–15:100 blend of (R)-2-methyl-1-butanol and (R)-3-hydroxy-2-hexanone, whereas the corresponding ratios for P. alni were 70–110:100. In field bioassays, adult P. sanguineum and P. alni were significantly attracted to multiple blends with varying ratios of the two compounds. When tested individually, the compounds were minimally attractive. In contrast, adult P. testaceus exhibited nonspecific attraction to both of the individual compounds and to different blends, despite the hydroxyketone not being part of its pheromone, which consists of (R)-2-methyl-1-butanol alone. Overall, our results suggest that a blend of 50:100 of racemic 2-methyl-1-butanol and 3-hydroxy-2-hexanone is appropriate for parallel, cost-efficient pheromone-based monitoring of all three species. In particular, these species could serve as useful indicators of how modern forestry practices affect a whole guild of saproxylic insects that require ephemeral deadwood substrates for successful breeding

    Quantitative single molecule analysis of podoplanin clustering in fibroblastic reticular cells uncovers CD44 function

    Get PDF
    Upon initial immune challenge, dendritic cells (DCs) migrate to lymph nodes and interact with fibroblastic reticular cells (FRCs) via C-type lectin-like receptor 2 (CLEC-2). CLEC-2 binds to the membrane glycoprotein podoplanin (PDPN) on FRCs, inhibiting actomyosin contractility through the FRC network and permitting lymph node expansion. The hyaluronic acid receptor CD44 is known to be required for FRCs to respond to DCs but the mechanism of action is not fully elucidated. Here, we use DNA-PAINT, a quantitative single molecule super-resolution technique, to visualize and quantify how PDPN clustering is regulated in the plasma membrane of FRCs. Our results indicate that CLEC-2 interaction leads to the formation of large PDPN clusters (i.e. more than 12 proteins per cluster) in a CD44-dependent manner. These results suggest that CD44 expression is required to stabilize large pools of PDPN at the membrane of FRCs upon CLEC-2 interaction, revealing the molecular mechanism through which CD44 facilitates cellular crosstalk between FRCs and DCs

    High-accuracy sampling of saproxylic diversity indicators at regional scales with pheromones: The case of "Elater ferrugineus" (Coleoptera, Elateridae)

    Get PDF
    The rare beetle Elater ferrugineus was sampled at 47 sites in the county of Östergötland, Sweden by means of pheromone-baited traps to assess its value as an indicator species for hollow oak stands rich in rare saproxylic beetle species. In addition, Osmoderma eremita was also sampled with pheromone baits. These data were then compared against species survey data collected at the same sites by pitfall and window traps. Both species co-occur with many Red Listed saproxylic beetles, with E. ferrugineus being a somewhat better indicator for the rarest species. The conservation value of a site (measured as Red List points or number of Red Listed species) increased with the number of specimens of E. ferrugineus and O. eremita caught. Accuracy of sampling by means of pheromone trapping turned out to be radically different for the two model species. E. ferrugineus traps put out during July obtained full accuracy after only 6 days, whereas O. eremita traps needed to be out from early July to mid-August in order to obtain full accuracy with one trap per site. By using E. ferrugineus, or preferably both species, as indicator species, accuracy would increase and costs decrease for saproxylic biodiversity sampling, monitoring and identification of hotspots

    A mesocosm concept for the simulation of near-natural shallow underwater climates: The Kiel Outdoor Benthocosms (KOB)

    Get PDF
    Biogenic, seasonal, and stochastic fluctuations at various scales characterize coastal marine habitats and modulate environmental stress. The relevance of most past studies into climate change impacts is weakened by the usually intentional exclusion of fluctuations from the experimental design. We describe a new outdoor mesocosm system for benthic research (“benthocosms”) which permit the control and manipulation of several environmental variables while admitting all natural in situ fluctuations. This is achieved by continuously measuring the relevant variables (e.g., temperature, pH, O2, CO2) in situ, defining these in real time as reference values in the control software and simulating target climates by delta treatments. The latter constitute the manipulative addition of predefined changes (e.g., “warming”, “acidification”) to the reference values. We illustrate the performance of the system by presenting the environmental data of four seasonal experiments which together represent an entire year. The “Kiel Outdoor Benthocosms” allow realizing near-natural climate change experiments on complex benthic communities under controlled scenarios

    Immune function and dysfunction are determined by lymphoid tissue efficacy

    Get PDF
    Lymphoid tissue returns to a steady state once each immune response is resolved, and although this occurs multiple times throughout life, its structural integrity and functionality remain unaffected. Stromal cells orchestrate cellular interactions within lymphoid tissue, and any changes to the microenvironment can have detrimental outcomes and drive disease. A breakdown in lymphoid tissue homeostasis can lead to a loss of tissue structure and function that can cause aberrant immune responses. This Review highlights recent advances in our understanding of lymphoid tissue function and remodelling in adaptive immunity and in disease states. We discuss the functional role of lymphoid tissue in disease progression and explore the changes to lymphoid tissue structure and function driven by infection, chronic inflammatory conditions and cancer. Understanding the role of lymphoid tissues in immune responses to a wide range of pathologies allows us to take a fuller systemic view of disease progression

    Ways to increase equity, diversity and inclusion

    Get PDF
    The eLife Early-Career Advisory Group (ECAG), an international group of early-career researchers committed to improving research culture, calls for radical changes at eLife and other journals to address racism in the scientific community and to make science more diverse and inclusive.Fil: Mehta, Devang. University of Alberta; CanadáFil: Bediako, Yaw. University Of Ghana; GhanaFil: De Winde, Charlotte M.. Colegio Universitario de Londres; Reino UnidoFil: Ebrahimi, Hedyeh. No especifíca;Fil: Fernández, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; ArgentinaFil: Ilangovan, Vinodh. University Aarhus; DinamarcaFil: Paz Quezada, Carolina. Universidad Bernardo O'higgins; ChileFil: Riley, Julia L.. Dalhousie University Halifax; CanadáFil: Saladi, Shyam M.. California Institute of Technology; Estados UnidosFil: Tay, Andy. No especifíca;Fil: Weissgerber, Tracey. No especifíca
    corecore